def prepref(data, maskfile, cnx, cny, numr, mode, maxrangex, maxrangey, step): # step = 1 mashi = cnx - numr[-3] - 2 nima = len(data) istep = int(old_div(1.0, step)) dimage = [[[None for j in range(2 * maxrangey * istep + 1)] for i in range(2 * maxrangex * istep + 1)] for im in range(nima)] for im in range(nima): sts = EMAN2_cppwrap.Util.infomask(data[im], maskfile, False) data[im] -= sts[0] data[im] = old_div(data[im], sts[1]) alpha, sx, sy, mirror, dummy = sp_utilities.get_params2D(data[im]) # alpha, sx, sy, dummy = combine_params2(alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) alphai, sxi, syi, dummy = sp_utilities.combine_params2( 0.0, sx, sy, 0, -alpha, 0, 0, 0) # introduce constraints on parameters to accomodate use of cs centering sxi = min(max(sxi, -mashi), mashi) syi = min(max(syi, -mashi), mashi) for j in range(-maxrangey * istep, maxrangey * istep + 1): iy = j * step for i in range(-maxrangex * istep, maxrangex * istep + 1): ix = i * step dimage[im][i + maxrangex][j + maxrangey] = EMAN2_cppwrap.Util.Polar2Dm( data[im], cnx + sxi + ix, cny + syi + iy, numr, mode) # print ' prepref ',j,i,j+maxrangey,i+maxrangex EMAN2_cppwrap.Util.Frngs( dimage[im][i + maxrangex][j + maxrangey], numr) dimage[im][0][0].set_attr("sxi", sxi) dimage[im][0][0].set_attr("syi", syi) return dimage
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() myid = mpi.mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: sp_global_def.ERROR("Incomplete list of arguments", "sxproj_stability.main", 1, myid=myid) return if not options.MPI: sp_global_def.ERROR("Non-MPI not supported!", "sxproj_stability.main", 1, myid=myid) return if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() sp_global_def.BATCH = True img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params sxprint(" B number of groups ", myid, " ", len(proj_list_all), time() - st) mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in range(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(list(map(int, temp))) del temp mpi_barrier(MPI_COMM_WORLD) sxprint(" C ", myid, " ", time() - st) if myid == main_node: # Assign the remaining groups to main_node for i in range(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method" ) return from sp_utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in range(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ sxprint(" B ", myid, " ", time() - st) proj_ang = [0.0] * (nima * 2) for i in range(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] sxprint(" C ", myid, " ", time() - st) asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in range(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi sxprint(" D ", myid, " ", time() - st) #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": sxprint(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") sxprint(" B ", myid, " ", time() - st) proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) sxprint(" C ", myid, " ", time() - st) from sp_utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, list(range(img_begin, img_begin + 1))) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list sxprint(" D ", myid, " ", time() - st) else: ERROR("Incorrect projection grouping option") return ########################################################################################################### # Begin stability test from sp_utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from sp_utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in range(len(proj_list)): sxprint(" E ", myid, " ", time() - st) class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from sp_filter import filt_ctf for im in range(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in range(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in range(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from sp_fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in range(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sy_s = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: sxprint(" empty group ", i, refprojdir[i]) aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', list(map(int, members))) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', list(map(float, members))) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', list(map(float, members))) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) sp_global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD)
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ Input Output [options] Generate three micrographs, each micrograph contains one projection of a long filament. Input: Reference Volume, output directory Output: Three micrographs stored in output directory sxhelical_demo.py tmp.hdf mic --generate_micrograph --CTF --apix=1.84 Generate noisy cylinder ini.hdf with radius 35 pixels and box size 100 by 100 by 200 sxhelical_demo.py ini.hdf --generate_noisycyl --boxsize="100,100,200" --rad=35 Generate rectangular 2D mask mask2d.hdf with width 60 pixels and image size 200 by 200 pixels sxhelical_demo.py mask2d.hdf --generate_mask --masksize="200,200" --maskwidth=60 Apply the centering parameters to bdb:adata, normalize using average and standard deviation outside the mask, and output the new images to bdb:data sxhelical_demo.py bdb:adata bdb:data mask2d.hdf --applyparams Generate run through example script for helicon sxhelical_demo.py --generate_script --filename=run --seg_ny=180 --ptcl_dist=15 --fract=0.35 """ parser = OptionParser(usage, version=SPARXVERSION) # helicise the Atom coordinates # generate micrographs of helical filament parser.add_option( "--generate_micrograph", action="store_true", default=False, help= "Generate three micrographs where each micrograph contains one projection of a long filament. \n Input: Reference Volume, output directory \n Output: Three micrographs containing helical filament projections stored in output directory" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction") parser.add_option("--apix", type="float", default=-1, help="pixel size in Angstroms") parser.add_option( "--rand_seed", type="int", default=14567, help= "the seed used for generating random numbers (default 14567) for adding noise to the generated micrographs." ) parser.add_option("--Cs", type="float", default=2.0, help="Microscope Cs (spherical aberation)") parser.add_option("--voltage", type="float", default=200.0, help="Microscope voltage in KV") parser.add_option("--ac", type="float", default=10.0, help="Amplitude contrast (percentage, default=10)") parser.add_option("--nonoise", action="store_true", default=False, help="Do not add noise to the micrograph.") # generate initial volume parser.add_option("--generate_noisycyl", action="store_true", default=False, help="Generate initial volume of noisy cylinder.") parser.add_option( "--boxsize", type="string", default="100,100,200", help= "String containing x , y, z dimensions (separated by comma) in pixels") parser.add_option("--rad", type="int", default=35, help="Radius of initial volume in pixels") # generate 2D mask parser.add_option("--generate_mask", action="store_true", default=False, help="Generate 2D rectangular mask.") parser.add_option( "--masksize", type="string", default="200,200", help= "String containing x and y dimensions (separated by comma) in pixels") parser.add_option("--maskwidth", type="int", default=60, help="Width of rectangular mask") # Apply 2D alignment parameters to input stack and output new images to output stack parser.add_option( "--applyparams", action="store_true", default=False, help= "Apply the centering parameters to input stack, normalize using average and standard deviation outside the mask, and output the new images to output stack" ) # Generate run script parser.add_option("--generate_script", action="store_true", default=False, help="Generate script for helicon run through example") parser.add_option("--filename", type="string", default="runhelicon", help="Name of run script to generate") parser.add_option("--seg_ny", type="int", default=180, help="y-dimension of segment used for refinement") parser.add_option( "--ptcl_dist", type="int", default=15, help= "Distance in pixels between adjacent segments windowed from same filament" ) parser.add_option( "--fract", type="float", default=0.35, help="Fraction of the volume used for applying helical symmetry.") (options, args) = parser.parse_args() if len(args) > 3: sxprint("usage: " + usage) sxprint("Please run '" + progname + " -h' for detailed options") ERROR( "Invalid number of parameters. Please see usage information above." ) return else: if options.generate_script: generate_runscript(options.filename, options.seg_ny, options.ptcl_dist, options.fract) if options.generate_micrograph: if options.apix <= 0: ERROR("Please enter pixel size.") return generate_helimic(args[0], args[1], options.apix, options.CTF, options.Cs, options.voltage, options.ac, options.nonoise, options.rand_seed) if options.generate_noisycyl: from sp_utilities import model_cylinder, model_gauss_noise outvol = args[0] boxdims = options.boxsize.split(',') if len(boxdims) < 1 or len(boxdims) > 3: ERROR( "Enter box size as string containing x , y, z dimensions (separated by comma) in pixels. E.g.: --boxsize=\'100,100,200\'" ) return nx = int(boxdims[0]) if len(boxdims) == 1: ny = nx nz = nx else: ny = int(boxdims[1]) if len(boxdims) == 3: nz = int(boxdims[2]) (model_cylinder(options.rad, nx, ny, nz) * model_gauss_noise(1.0, nx, ny, nz)).write_image(outvol) if options.generate_mask: from sp_utilities import model_blank, pad outvol = args[0] maskdims = options.masksize.split(',') if len(maskdims) < 1 or len(maskdims) > 2: ERROR( "Enter box size as string containing x , y dimensions (separated by comma) in pixels. E.g.: --boxsize=\'200,200\'" ) return nx = int(maskdims[0]) if len(maskdims) == 1: ny = nx else: ny = int(maskdims[1]) mask = pad(model_blank(options.maskwidth, ny, 1, 1.0), nx, ny, 1, 0.0) mask.write_image(outvol) if options.applyparams: from sp_utilities import get_im, get_params2D, set_params2D from sp_fundamentals import cyclic_shift stack = args[0] newstack = args[1] mask = get_im(args[2]) nima = EMUtil.get_image_count(stack) for im in range(nima): prj = get_im(stack, im) alpha, sx, sy, mirror, scale = get_params2D(prj) prj = cyclic_shift(prj, int(sx)) set_params2D(prj, [0.0, 0., 0.0, 0, 1]) stat = Util.infomask(prj, mask, False) prj = (prj - stat[0]) / stat[1] ctf_params = prj.get_attr("ctf") prj.set_attr('ctf_applied', 0) prj.write_image(newstack, im)
def ali2d_single_iter( data, numr, wr, cs, tavg, cnx, cny, xrng, yrng, step, nomirror=False, mode="F", CTF=False, random_method="", T=1.0, ali_params="xform.align2d", delta=0.0, ): """ single iteration of 2D alignment using ormq if CTF = True, apply CTF to data (not to reference!) """ maxrin = numr[-1] # length ou = numr[-3] # maximum radius if random_method == "SCF": frotim = [sp_fundamentals.fft(tavg)] xrng = int(xrng + 0.5) yrng = int(yrng + 0.5) cimage = EMAN2_cppwrap.Util.Polar2Dm(sp_fundamentals.scf(tavg), cnx, cny, numr, mode) EMAN2_cppwrap.Util.Frngs(cimage, numr) EMAN2_cppwrap.Util.Applyws(cimage, numr, wr) else: # 2D alignment using rotational ccf in polar coords and quadratic interpolation cimage = EMAN2_cppwrap.Util.Polar2Dm(tavg, cnx, cny, numr, mode) EMAN2_cppwrap.Util.Frngs(cimage, numr) EMAN2_cppwrap.Util.Applyws(cimage, numr, wr) sx_sum = 0.0 sy_sum = 0.0 sxn = 0.0 syn = 0.0 mn = 0 nope = 0 mashi = cnx - ou - 2 for im in range(len(data)): if CTF: # Apply CTF to image ctf_params = data[im].get_attr("ctf") ima = sp_filter.filt_ctf(data[im], ctf_params, True) else: ima = data[im] if random_method == "PCP": sxi = data[im][0][0].get_attr("sxi") syi = data[im][0][0].get_attr("syi") nx = ny = data[im][0][0].get_attr("inx") else: nx = ima.get_xsize() ny = ima.get_ysize() alpha, sx, sy, mirror, dummy = sp_utilities.get_params2D( data[im], ali_params) alpha, sx, sy, dummy = sp_utilities.combine_params2( alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) alphai, sxi, syi, scalei = sp_utilities.inverse_transform2( alpha, sx, sy) # introduce constraints on parameters to accomodate use of cs centering sxi = min(max(sxi, -mashi), mashi) syi = min(max(syi, -mashi), mashi) # The search range procedure was adjusted for 3D searches, so since in 2D the order of operations is inverted, we have to invert ranges txrng = search_range(nx, ou, sxi, xrng, "ali2d_single_iter") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, ou, syi, yrng, "ali2d_single_iter") tyrng = [tyrng[1], tyrng[0]] # print im, "B",cnx,sxi,syi,txrng, tyrng # align current image to the reference if random_method == "SHC": """Multiline Comment0""" # For shc combining of shifts is problematic as the image may randomly slide away and never come back. # A possibility would be to reject moves that results in too large departure from the center. # On the other hand, one cannot simply do searches around the proper center all the time, # as if xr is decreased, the image cannot be brought back if the established shifts are further than new range olo = EMAN2_cppwrap.Util.shc( ima, [cimage], txrng, tyrng, step, -1.0, mode, numr, cnx + sxi, cny + syi, "c1", ) ##olo = Util.shc(ima, [cimage], xrng, yrng, step, -1.0, mode, numr, cnx, cny, "c1") if data[im].get_attr("previousmax") < olo[5]: # [angt, sxst, syst, mirrort, peakt] = ormq(ima, cimage, xrng, yrng, step, mode, numr, cnx+sxi, cny+syi, delta) # print angt, sxst, syst, mirrort, peakt,olo angt = olo[0] sxst = olo[1] syst = olo[2] mirrort = int(olo[3]) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) ##set_params2D(data[im], [angt, sxst, syst, mirrort, 1.0], ali_params) data[im].set_attr("previousmax", olo[5]) else: # Did not find a better peak, but we have to set shifted parameters, as the average shifted sp_utilities.set_params2D(data[im], [alpha, sx, sy, mirror, 1.0], ali_params) nope += 1 mn = 0 sxn = 0.0 syn = 0.0 elif random_method == "SCF": sxst, syst, iref, angt, mirrort, totpeak = multalign2d_scf( data[im], [cimage], frotim, numr, xrng, yrng, ou=ou) [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) elif random_method == "PCP": [angt, sxst, syst, mirrort, peakt] = ormq_fast(data[im], cimage, txrng, tyrng, step, numr, mode, delta) sxst = rings[0][0][0].get_attr("sxi") syst = rings[0][0][0].get_attr("syi") sp_global_def.sxprint(sxst, syst, sx, sy) dummy, sxs, sys, dummy = sp_utilities.inverse_transform2( -angt, sx + sxst, sy + syst) sp_utilities.set_params2D(data[im][0][0], [angt, sxs, sys, mirrort, 1.0], ali_params) else: if nomirror: [angt, sxst, syst, mirrort, peakt] = ornq(ima, cimage, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) else: [angt, sxst, syst, mirrort, peakt] = ormq( ima, cimage, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi, delta, ) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) if mn == 0: sx_sum += sxn else: sx_sum -= sxn sy_sum += syn return sx_sum, sy_sum, nope
def filter_shrink(input_bdb_name, output_stack_path, output_bdb_name, alignYN=False, filtrad=None, shrink=None, verbose=False): """ Filters and shrinks image stack. Arguments: input_bdb_name : Input BDB stack (in the form bdb:DIRECTORY#STACK) output_stack_path : Name for output image stack (MRCS/HDF/etc.) output_bdb_name : Name for output BDB stack (in the form bdb:DIRECTORY#STACK) alignYN: (boolean) Whether to apply alignments filtrad : Filter radius, reciprocal pixels shrink : Downsampling factor combined_params_file : Output combined alignment parameters verbose : (boolean) Whether to write to screen """ input_stack = EMData.read_images(input_bdb_name) num_imgs = EMUtil.get_image_count(input_bdb_name) box_size = input_stack[0].get_attr('nx') if options.shrink: sub_rate = float(1) / options.shrink box_size = int(float(box_size) / options.shrink + 0.5) if verbose: print('sub_rate', sub_rate, type(sub_rate), box_size, options.shrink) # Initialize stack & BDB aligned_stack_obj = EMData(box_size, box_size, num_imgs) new_bdb_dict = db_open_dict(output_bdb_name) # Loop through images for img_num in range(len(input_stack)): img_orig = input_stack[img_num] try: alpha, sx, sy, mirror, scale = get_params2D(img_orig) except RuntimeError: print('\nERROR! Exiting with RuntimeError') img_prev = input_stack[img_num - 1] print('\nPrevious particle: %s %s' % (img_num - 1, img_prev.get_attr_dict())) print('\nCurrent particle: %s %s' % (img_num, img_orig.get_attr_dict())) exit() # Optionally apply alignment parameters if alignYN: img_ali = rot_shift2D(img_orig, alpha, sx, sy, mirror, scale, "quadratic") else: img_ali = img_orig if verbose and img_num == 0: print('\nimg_orig.get_attr_dict0', img_orig.get_attr_dict()) img_ali_dict = img_ali.get_attr_dict() print('\nimg_ali.get_attr_dict1\n', img_ali.get_attr_dict()) if filtrad: img_ali = filt_gaussl(img_ali, filtrad) if shrink: img_ali = resample(img_ali, sub_rate) #### (Maybe update resample_ratio) img_ali_dict = img_ali.get_attr_dict() img_ali_dict["data_path"] = os.path.join( '..', STACKFILEDIR, os.path.basename(output_stack_path)) img_ali_dict["ptcl_source_coord_id"] = img_num new_bdb_dict[img_num] = img_ali_dict aligned_stack_obj.insert_clip(img_ali, (0, 0, img_num)) # End image-loop aligned_stack_obj.write_image(output_stack_path) db_close_dict(output_bdb_name) return num_imgs
def mref_ali2d_MPI(stack, refim, outdir, maskfile=None, ir=1, ou=-1, rs=1, xrng=0, yrng=0, step=1, center=1, maxit=10, CTF=False, snr=1.0, user_func_name="ref_ali2d", rand_seed=1000): # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image, get_im from sp_utilities import reduce_EMData_to_root, bcast_EMData_to_all, bcast_number_to_all from sp_utilities import send_attr_dict from sp_utilities import center_2D from sp_statistics import fsc_mask from sp_alignment import Numrinit, ringwe, search_range from sp_fundamentals import rot_shift2D, fshift from sp_utilities import get_params2D, set_params2D from random import seed, randint from sp_morphology import ctf_2 from sp_filter import filt_btwl, filt_params from numpy import reshape, shape from sp_utilities import print_msg, print_begin_msg, print_end_msg import os import sys import shutil from sp_applications import MPI_start_end from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_recv, mpi_send from mpi import MPI_SUM, MPI_FLOAT, MPI_INT number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 # create the output directory, if it does not exist if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "mref_ali2d_MPI ", 1, myid) mpi_barrier(MPI_COMM_WORLD) import sp_global_def if myid == main_node: os.mkdir(outdir) sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE) print_begin_msg("mref_ali2d_MPI") nima = EMUtil.get_image_count(stack) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) nima = EMUtil.get_image_count(stack) ima = EMData() ima.read_image(stack, image_start) first_ring = int(ir) last_ring = int(ou) rstep = int(rs) max_iter = int(maxit) if max_iter == 0: max_iter = 10 auto_stop = True else: auto_stop = False if myid == main_node: print_msg("Input stack : %s\n" % (stack)) print_msg("Reference stack : %s\n" % (refim)) print_msg("Output directory : %s\n" % (outdir)) print_msg("Maskfile : %s\n" % (maskfile)) print_msg("Inner radius : %i\n" % (first_ring)) nx = ima.get_xsize() # default value for the last ring if last_ring == -1: last_ring = nx / 2 - 2 if myid == main_node: print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %f\n" % (xrng)) print_msg("Y search range : %f\n" % (yrng)) print_msg("Translational step : %f\n" % (step)) print_msg("Center type : %i\n" % (center)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Random seed : %i\n\n" % (rand_seed)) print_msg("User function : %s\n" % (user_func_name)) import sp_user_functions user_func = sp_user_functions.factory[user_func_name] if maskfile: import types if type(maskfile) is bytes: mask = get_image(maskfile) else: mask = maskfile else: mask = model_circle(last_ring, nx, nx) # references, do them on all processors... refi = [] numref = EMUtil.get_image_count(refim) # IMAGES ARE SQUARES! center is in SPIDER convention cnx = nx / 2 + 1 cny = cnx mode = "F" #precalculate rings numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) # prepare reference images on all nodes ima.to_zero() for j in range(numref): # even, odd, numer of even, number of images. After frc, totav refi.append([get_im(refim, j), ima.copy(), 0]) # for each node read its share of data data = EMData.read_images(stack, list(range(image_start, image_end))) for im in range(image_start, image_end): data[im - image_start].set_attr('ID', im) if myid == main_node: seed(rand_seed) a0 = -1.0 again = True Iter = 0 ref_data = [mask, center, None, None] while Iter < max_iter and again: ringref = [] mashi = cnx - last_ring - 2 for j in range(numref): refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) # normalize reference images to N(0,1) cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr) ringref.append(cimage) # zero refi refi[j][0].to_zero() refi[j][1].to_zero() refi[j][2] = 0 assign = [[] for i in range(numref)] # begin MPI section for im in range(image_start, image_end): alpha, sx, sy, mirror, scale = get_params2D(data[im - image_start]) # Why inverse? 07/11/2015 PAP alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy) # normalize data[im - image_start].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 0 }) # subtract average under the mask # If shifts are outside of the permissible range, reset them if (abs(sxi) > mashi or abs(syi) > mashi): sxi = 0.0 syi = 0.0 set_params2D(data[im - image_start], [0.0, 0.0, 0.0, 0, 1.0]) ny = nx txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d_MPI") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d_MPI") tyrng = [tyrng[1], tyrng[0]] # align current image to the reference [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im - image_start], ringref, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort)) set_params2D(data[im - image_start], [alphan, sxn, syn, int(mn), scale]) data[im - image_start].set_attr('assign', iref) # apply current parameters and add to the average temp = rot_shift2D(data[im - image_start], alphan, sxn, syn, mn) it = im % 2 Util.add_img(refi[iref][it], temp) assign[iref].append(im) #assign[im] = iref refi[iref][2] += 1.0 del ringref # end MPI section, bring partial things together, calculate new reference images, broadcast them back for j in range(numref): reduce_EMData_to_root(refi[j][0], myid, main_node) reduce_EMData_to_root(refi[j][1], myid, main_node) refi[j][2] = mpi_reduce(refi[j][2], 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if (myid == main_node): refi[j][2] = int(refi[j][2][0]) # gather assignements for j in range(numref): if myid == main_node: for n in range(number_of_proc): if n != main_node: import sp_global_def ln = mpi_recv(1, MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) lis = mpi_recv(ln[0], MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for l in range(ln[0]): assign[j].append(int(lis[l])) else: import sp_global_def mpi_send(len(assign[j]), 1, MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(assign[j], len(assign[j]), MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) if myid == main_node: # replace the name of the stack with reference with the current one refim = os.path.join(outdir, "aqm%03d.hdf" % Iter) a1 = 0.0 ave_fsc = [] for j in range(numref): if refi[j][2] < 4: #ERROR("One of the references vanished","mref_ali2d_MPI",1) # if vanished, put a random image (only from main node!) there assign[j] = [] assign[j].append( randint(image_start, image_end - 1) - image_start) refi[j][0] = data[assign[j][0]].copy() #print 'ERROR', j else: #frsc = fsc_mask(refi[j][0], refi[j][1], mask, 1.0, os.path.join(outdir,"drm%03d%04d"%(Iter, j))) from sp_statistics import fsc frsc = fsc( refi[j][0], refi[j][1], 1.0, os.path.join(outdir, "drm%03d%04d.txt" % (Iter, j))) Util.add_img(refi[j][0], refi[j][1]) Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2])) if ave_fsc == []: for i in range(len(frsc[1])): ave_fsc.append(frsc[1][i]) c_fsc = 1 else: for i in range(len(frsc[1])): ave_fsc[i] += frsc[1][i] c_fsc += 1 #print 'OK', j, len(frsc[1]), frsc[1][0:5], ave_fsc[0:5] #print 'sum', sum(ave_fsc) if sum(ave_fsc) != 0: for i in range(len(ave_fsc)): ave_fsc[i] /= float(c_fsc) frsc[1][i] = ave_fsc[i] for j in range(numref): ref_data[2] = refi[j][0] ref_data[3] = frsc refi[j][0], cs = user_func(ref_data) # write the current average TMP = [] for i_tmp in range(len(assign[j])): TMP.append(float(assign[j][i_tmp])) TMP.sort() refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP}) del TMP refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) refi[j][0].write_image(refim, j) Iter += 1 msg = "ITERATION #%3d %d\n\n" % (Iter, again) print_msg(msg) for j in range(numref): msg = " group #%3d number of particles = %7d\n" % ( j, refi[j][2]) print_msg(msg) Iter = bcast_number_to_all(Iter, main_node) # need to tell all if again: for j in range(numref): bcast_EMData_to_all(refi[j][0], myid, main_node) # clean up del assign # write out headers and STOP, under MPI writing has to be done sequentially (time-consumming) mpi_barrier(MPI_COMM_WORLD) if CTF and data_had_ctf == 0: for im in range(len(data)): data[im].set_attr('ctf_applied', 0) par_str = ['xform.align2d', 'assign', 'ID'] if myid == main_node: from sp_utilities import file_type if (file_type(stack) == "bdb"): from sp_utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from sp_utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("mref_ali2d_MPI")
def mref_ali2d(stack, refim, outdir, maskfile=None, ir=1, ou=-1, rs=1, xrng=0, yrng=0, step=1, center=1, maxit=0, CTF=False, snr=1.0, user_func_name="ref_ali2d", rand_seed=1000, MPI=False): """ Name mref_ali2d - Perform 2-D multi-reference alignment of an image series Input stack: set of 2-D images in a stack file, images have to be squares refim: set of initial reference 2-D images in a stack file maskfile: optional maskfile to be used in the alignment inner_radius: inner radius for rotational correlation > 0 outer_radius: outer radius for rotational correlation < nx/2-1 ring_step: step between rings in rotational correlation >0 x_range: range for translation search in x direction, search is +/xr y_range: range for translation search in y direction, search is +/yr translation_step: step of translation search in both directions center: center the average max_iter: maximum number of iterations the program will perform CTF: if this flag is set, the program will use CTF information provided in file headers snr: signal-to-noise ratio of the data rand_seed: the seed used for generating random numbers MPI: whether to use MPI version Output output_directory: directory name into which the output files will be written. header: the alignment parameters are stored in the headers of input files as 'xform.align2d'. """ # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation if MPI: mref_ali2d_MPI(stack, refim, outdir, maskfile, ir, ou, rs, xrng, yrng, step, center, maxit, CTF, snr, user_func_name, rand_seed) return from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image from sp_utilities import center_2D, get_im, get_params2D, set_params2D from sp_statistics import fsc from sp_alignment import Numrinit, ringwe, fine_2D_refinement, search_range from sp_fundamentals import rot_shift2D, fshift from random import seed, randint import os import sys from sp_utilities import print_begin_msg, print_end_msg, print_msg import shutil # create the output directory, if it does not exist if os.path.exists(outdir): shutil.rmtree( outdir ) #ERROR('Output directory exists, please change the name and restart the program', "mref_ali2d", 1) os.mkdir(outdir) import sp_global_def sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE) first_ring = int(ir) last_ring = int(ou) rstep = int(rs) max_iter = int(maxit) print_begin_msg("mref_ali2d") print_msg("Input stack : %s\n" % (stack)) print_msg("Reference stack : %s\n" % (refim)) print_msg("Output directory : %s\n" % (outdir)) print_msg("Maskfile : %s\n" % (maskfile)) print_msg("Inner radius : %i\n" % (first_ring)) ima = EMData() ima.read_image(stack, 0) nx = ima.get_xsize() # default value for the last ring if last_ring == -1: last_ring = nx / 2 - 2 print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %i\n" % (xrng)) print_msg("Y search range : %i\n" % (yrng)) print_msg("Translational step : %i\n" % (step)) print_msg("Center type : %i\n" % (center)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Random seed : %i\n\n" % (rand_seed)) print_msg("User function : %s\n" % (user_func_name)) output = sys.stdout import sp_user_functions user_func = sp_user_functions.factory[user_func_name] if maskfile: import types if type(maskfile) is bytes: mask = get_image(maskfile) else: mask = maskfile else: mask = model_circle(last_ring, nx, nx) # references refi = [] numref = EMUtil.get_image_count(refim) # IMAGES ARE SQUARES! center is in SPIDER convention cnx = nx / 2 + 1 cny = cnx mode = "F" #precalculate rings numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) # reference images params = [] #read all data data = EMData.read_images(stack) nima = len(data) # prepare the reference ima.to_zero() for j in range(numref): temp = EMData() temp.read_image(refim, j) # eve, odd, numer of even, number of images. After frc, totav refi.append([temp, ima.copy(), 0]) seed(rand_seed) again = True ref_data = [mask, center, None, None] Iter = 0 while Iter < max_iter and again: ringref = [] #print "numref",numref ### Reference ### mashi = cnx - last_ring - 2 for j in range(numref): refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr) ringref.append(cimage) assign = [[] for i in range(numref)] sx_sum = [0.0] * numref sy_sum = [0.0] * numref for im in range(nima): alpha, sx, sy, mirror, scale = get_params2D(data[im]) # Why inverse? 07/11/2015 PAP alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy) # normalize data[im].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 0 }) # If shifts are outside of the permissible range, reset them if (abs(sxi) > mashi or abs(syi) > mashi): sxi = 0.0 syi = 0.0 set_params2D(data[im], [0.0, 0.0, 0.0, 0, 1.0]) ny = nx txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d") tyrng = [tyrng[1], tyrng[0]] # align current image to the reference #[angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d_p(data[im], # ringref, txrng, tyrng, step, mode, numr, cnx+sxi, cny+syi) #print(angt, sxst, syst, mirrort, xiref, peakt) [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im], ringref, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, int(mirrort)) set_params2D(data[im], [alphan, sxn, syn, int(mn), scale]) if mn == 0: sx_sum[iref] += sxn else: sx_sum[iref] -= sxn sy_sum[iref] += syn data[im].set_attr('assign', iref) # apply current parameters and add to the average temp = rot_shift2D(data[im], alphan, sxn, syn, mn) it = im % 2 Util.add_img(refi[iref][it], temp) assign[iref].append(im) refi[iref][2] += 1 del ringref if again: a1 = 0.0 for j in range(numref): msg = " group #%3d number of particles = %7d\n" % ( j, refi[j][2]) print_msg(msg) if refi[j][2] < 4: #ERROR("One of the references vanished","mref_ali2d",1) # if vanished, put a random image there assign[j] = [] assign[j].append(randint(0, nima - 1)) refi[j][0] = data[assign[j][0]].copy() else: max_inter = 0 # switch off fine refi. br = 1.75 # the loop has to for INter in range(max_inter + 1): # Calculate averages at least ones, meaning even if no within group refinement was requested frsc = fsc( refi[j][0], refi[j][1], 1.0, os.path.join(outdir, "drm_%03d_%04d.txt" % (Iter, j))) Util.add_img(refi[j][0], refi[j][1]) Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2])) ref_data[2] = refi[j][0] ref_data[3] = frsc refi[j][0], cs = user_func(ref_data) if center == -1: cs[0] = sx_sum[j] / len(assign[j]) cs[1] = sy_sum[j] / len(assign[j]) refi[j][0] = fshift(refi[j][0], -cs[0], -cs[1]) for i in range(len(assign[j])): im = assign[j][i] alpha, sx, sy, mirror, scale = get_params2D( data[im]) alphan, sxn, syn, mirrorn = combine_params2( alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) set_params2D( data[im], [alphan, sxn, syn, int(mirrorn), scale]) # refine images within the group # Do the refinement only if max_inter>0, but skip it for the last iteration. if INter < max_inter: fine_2D_refinement(data, br, mask, refi[j][0], j) # Calculate updated average refi[j][0].to_zero() refi[j][1].to_zero() for i in range(len(assign[j])): im = assign[j][i] alpha, sx, sy, mirror, scale = get_params2D( data[im]) # apply current parameters and add to the average temp = rot_shift2D(data[im], alpha, sx, sy, mn) it = im % 2 Util.add_img(refi[j][it], temp) # write the current average TMP = [] for i_tmp in range(len(assign[j])): TMP.append(float(assign[j][i_tmp])) TMP.sort() refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP}) del TMP # replace the name of the stack with reference with the current one newrefim = os.path.join(outdir, "aqm%03d.hdf" % Iter) refi[j][0].write_image(newrefim, j) Iter += 1 msg = "ITERATION #%3d \n" % (Iter) print_msg(msg) newrefim = os.path.join(outdir, "multi_ref.hdf") for j in range(numref): refi[j][0].write_image(newrefim, j) from sp_utilities import write_headers write_headers(stack, data, list(range(nima))) print_end_msg("mref_ali2d")
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <inputfile> <outputfile> Forms chains of 2D images based on their similarities. Functionality: Order a 2-D stack of image based on pair-wise similarity (computed as a cross-correlation coefficent). Options 1-3 require image stack to be aligned. The program will apply orientation parameters if present in headers. The ways to use the program: 1. Use option initial to specify which image will be used as an initial seed to form the chain. sp_chains.py input_stack.hdf output_stack.hdf --initial=23 --radius=25 2. If options initial is omitted, the program will determine which image best serves as initial seed to form the chain sp_chains.py input_stack.hdf output_stack.hdf --radius=25 3. Use option circular to form a circular chain. sp_chains.py input_stack.hdf output_stack.hdf --circular--radius=25 4. New circular code based on pairwise alignments sp_chains.py aclf.hdf chain.hdf circle.hdf --align --radius=25 --xr=2 --pairwiseccc=lcc.txt 5. Circular ordering based on pairwise alignments sp_chains.py vols.hdf chain.hdf mask.hdf --dd --radius=25 """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--dd", action="store_true", help="Circular ordering without adjustment of orientations", default=False) parser.add_option( "--circular", action="store_true", help= "Select circular ordering (first image has to be similar to the last)", default=False) parser.add_option( "--align", action="store_true", help= "Compute all pairwise alignments and from the table of image similarities find the best chain", default=False) parser.add_option( "--initial", type="int", default=-1, help= "Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)" ) parser.add_option( "--radius", type="int", default=-1, help="Radius of a circular mask for similarity based ordering") # import params for 2D alignment parser.add_option( "--ou", type="int", default=-1, help= "outer radius for 2D alignment < nx/2-1 (set to the radius of the particle)" ) parser.add_option( "--xr", type="int", default=0, help="range for translation search in x direction, search is +/xr (0)") parser.add_option( "--yr", type="int", default=0, help="range for translation search in y direction, search is +/yr (0)") # parser.add_option("--nomirror", action="store_true", default=False, help="Disable checking mirror orientations of images (default False)") parser.add_option("--pairwiseccc", type="string", default=" ", help="Input/output pairwise ccc file") (options, args) = parser.parse_args() sp_global_def.BATCH = True if options.dd: nargs = len(args) if nargs != 3: ERROR("Must provide name of input and two output files!") return stack = args[0] new_stack = args[1] from sp_utilities import model_circle from sp_statistics import ccc from sp_statistics import mono lend = EMUtil.get_image_count(stack) lccc = [None] * (old_div(lend * (lend - 1), 2)) for i in range(lend - 1): v1 = get_im(stack, i) if (i == 0 and nargs == 2): nx = v1.get_xsize() ny = v1.get_ysize() nz = v1.get_ysize() if options.ou < 1: radius = old_div(nx, 2) - 2 else: radius = options.ou mask = model_circle(radius, nx, ny, nz) else: mask = get_im(args[2]) for j in range(i + 1, lend): lccc[mono(i, j)] = [ccc(v1, get_im(stack, j), mask), 0] order = tsp(lccc) if (len(order) != lend): ERROR("Problem with data length") return sxprint("Total sum of cccs :", TotalDistance(order, lccc)) sxprint("ordering :", order) for i in range(lend): get_im(stack, order[i]).write_image(new_stack, i) elif options.align: nargs = len(args) if nargs != 3: ERROR("Must provide name of input and two output files!") return from sp_utilities import get_params2D, model_circle from sp_fundamentals import rot_shift2D from sp_statistics import ccc from time import time from sp_alignment import align2d, align2d_scf stack = args[0] new_stack = args[1] d = EMData.read_images(stack) if (len(d) < 6): ERROR( "Chains requires at least six images in the input stack to be executed" ) return """ # will align anyway try: ttt = d[0].get_attr('xform.params2d') for i in xrange(len(d)): alpha, sx, sy, mirror, scale = get_params2D(d[i]) d[i] = rot_shift2D(d[i], alpha, sx, sy, mirror) except: pass """ nx = d[0].get_xsize() ny = d[0].get_ysize() if options.ou < 1: radius = old_div(nx, 2) - 2 else: radius = options.ou mask = model_circle(radius, nx, ny) if (options.xr < 0): xrng = 0 else: xrng = options.xr if (options.yr < 0): yrng = xrng else: yrng = options.yr initial = max(options.initial, 0) from sp_statistics import mono lend = len(d) lccc = [None] * (old_div(lend * (lend - 1), 2)) from sp_utilities import read_text_row if options.pairwiseccc == " " or not os.path.exists( options.pairwiseccc): st = time() for i in range(lend - 1): for j in range(i + 1, lend): # j>i meaning mono entry (i,j) or (j,i) indicates T i->j (from smaller index to larger) # alpha, sx, sy, mir, peak = align2d(d[i],d[j], xrng, yrng, step=options.ts, first_ring=options.ir, last_ring=radius, mode = "F") alpha, sx, sy, mir, peak = align2d_scf(d[i], d[j], xrng, yrng, ou=radius) lccc[mono(i, j)] = [ ccc(d[j], rot_shift2D(d[i], alpha, sx, sy, mir, 1.0), mask), alpha, sx, sy, mir ] # print " %4d %10.1f"%(i,time()-st) if ((not os.path.exists(options.pairwiseccc)) and (options.pairwiseccc != " ")): write_text_row([[initial, 0, 0, 0, 0]] + lccc, options.pairwiseccc) elif (os.path.exists(options.pairwiseccc)): lccc = read_text_row(options.pairwiseccc) initial = int(lccc[0][0] + 0.1) del lccc[0] for i in range(len(lccc)): T = Transform({ "type": "2D", "alpha": lccc[i][1], "tx": lccc[i][2], "ty": lccc[i][3], "mirror": int(lccc[i][4] + 0.1) }) lccc[i] = [lccc[i][0], T] tdummy = Transform({"type": "2D"}) maxsum = -1.023 for m in range(0, lend): # initial, initial+1): indc = list(range(lend)) lsnake = [[m, tdummy, 0.0]] del indc[m] lsum = 0.0 while len(indc) > 1: maxcit = -111. for i in range(len(indc)): cuc = lccc[mono(indc[i], lsnake[-1][0])][0] if cuc > maxcit: maxcit = cuc qi = indc[i] # Here we need transformation from the current to the previous, # meaning indc[i] -> lsnake[-1][0] T = lccc[mono(indc[i], lsnake[-1][0])][1] # If direction is from larger to smaller index, the transformation has to be inverted if (indc[i] > lsnake[-1][0]): T = T.inverse() lsnake.append([qi, T, maxcit]) lsum += maxcit del indc[indc.index(qi)] T = lccc[mono(indc[-1], lsnake[-1][0])][1] if (indc[-1] > lsnake[-1][0]): T = T.inverse() lsnake.append( [indc[-1], T, lccc[mono(indc[-1], lsnake[-1][0])][0]]) sxprint(" initial image and lsum ", m, lsum) # print lsnake if (lsum > maxsum): maxsum = lsum init = m snake = [lsnake[i] for i in range(lend)] sxprint(" Initial image selected : ", init, maxsum, " ", TotalDistance([snake[m][0] for m in range(lend)], lccc)) # for q in snake: print q from copy import deepcopy trans = deepcopy([snake[i][1] for i in range(len(snake))]) sxprint([snake[i][0] for i in range(len(snake))]) """ for m in xrange(lend): prms = trans[m].get_params("2D") print " %3d %7.1f %7.1f %7.1f %2d %6.2f"%(snake[m][0], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"], snake[m][2]) """ for k in range(lend - 2, 0, -1): T = snake[k][1] for i in range(k + 1, lend): trans[i] = T * trans[i] # To add - apply all transformations and do the overall centering. for m in range(lend): prms = trans[m].get_params("2D") # print(" %3d %7.1f %7.1f %7.1f %2d %6.2f"%(snake[m][0], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"], snake[m][2]) ) # rot_shift2D(d[snake[m][0]], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"]).write_image(new_stack, m) rot_shift2D(d[snake[m][0]], prms["alpha"], 0.0, 0.0, prms["mirror"]).write_image(new_stack, m) order = tsp(lccc) if (len(order) != lend): ERROR("Problem with data length") return sxprint(TotalDistance(order, lccc)) sxprint(order) ibeg = order.index(init) order = [order[(i + ibeg) % lend] for i in range(lend)] sxprint(TotalDistance(order, lccc)) sxprint(order) snake = [tdummy] for i in range(1, lend): # Here we need transformation from the current to the previous, # meaning order[i] -> order[i-1]] T = lccc[mono(order[i], order[i - 1])][1] # If direction is from larger to smaller index, the transformation has to be inverted if (order[i] > order[i - 1]): T = T.inverse() snake.append(T) assert (len(snake) == lend) from copy import deepcopy trans = deepcopy(snake) for k in range(lend - 2, 0, -1): T = snake[k] for i in range(k + 1, lend): trans[i] = T * trans[i] # Try to smooth the angles - complicated, I am afraid one would have to use angles forward and backwards # and find their average?? # In addition, one would have to recenter them """ trms = [] for m in xrange(lend): prms = trans[m].get_params("2D") trms.append([prms["alpha"], prms["mirror"]]) for i in xrange(3): for m in xrange(lend): mb = (m-1)%lend me = (m+1)%lend # angles order mb,m,me # calculate predicted angles mb->m """ best_params = [] for m in range(lend): prms = trans[m].get_params("2D") # rot_shift2D(d[order[m]], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"]).write_image("metro.hdf", m) rot_shift2D(d[order[m]], prms["alpha"], 0.0, 0.0, prms["mirror"]).write_image(args[2], m) best_params.append( [m, order[m], prms["alpha"], 0.0, 0.0, prms["mirror"]]) # Write alignment parameters outdir = os.path.dirname(args[2]) aligndoc = os.path.join(outdir, "chains_params.txt") write_text_row(best_params, aligndoc) """ # This was an effort to get number of loops, inconclusive, to say the least from numpy import outer, zeros, float32, sqrt lend = len(d) cor = zeros(lend,float32) cor = outer(cor, cor) for i in xrange(lend): cor[i][i] = 1.0 for i in xrange(lend-1): for j in xrange(i+1, lend): cor[i,j] = lccc[mono(i,j)][0] cor[j,i] = cor[i,j] lmbd, eigvec = pca(cor) from sp_utilities import write_text_file nvec=20 print [lmbd[j] for j in xrange(nvec)] print " G" mm = [-1]*lend for i in xrange(lend): # row mi = -1.0e23 for j in xrange(nvec): qt = eigvec[j][i] if(abs(qt)>mi): mi = abs(qt) mm[i] = j for j in xrange(nvec): qt = eigvec[j][i] print round(qt,3), # eigenvector print mm[i] print for j in xrange(nvec): qt = [] for i in xrange(lend): if(mm[i] == j): qt.append(i) if(len(qt)>0): write_text_file(qt,"loop%02d.txt"%j) """ """ print [lmbd[j] for j in xrange(nvec)] print " B" mm = [-1]*lend for i in xrange(lend): # row mi = -1.0e23 for j in xrange(nvec): qt = eigvec[j][i]/sqrt(lmbd[j]) if(abs(qt)>mi): mi = abs(qt) mm[i] = j for j in xrange(nvec): qt = eigvec[j][i]/sqrt(lmbd[j]) print round(qt,3), # eigenvector print mm[i] print """ """ lend=3 cor = zeros(lend,float32) cor = outer(cor, cor) cor[0][0] =136.77 cor[0][1] = 79.15 cor[0][2] = 37.13 cor[1][0] = 79.15 cor[2][0] = 37.13 cor[1][1] = 50.04 cor[1][2] = 21.65 cor[2][1] = 21.65 cor[2][2] = 13.26 lmbd, eigvec = pca(cor) print lmbd print eigvec for i in xrange(lend): # row for j in xrange(lend): print eigvec[j][i], # eigenvector print print " B" for i in xrange(lend): # row for j in xrange(lend): print eigvec[j][i]/sqrt(lmbd[j]), # eigenvector print print " G" for i in xrange(lend): # row for j in xrange(lend): print eigvec[j][i]*sqrt(lmbd[j]), # eigenvector print """ else: nargs = len(args) if nargs != 2: ERROR("Must provide name of input and output file!") return from sp_utilities import get_params2D, model_circle from sp_fundamentals import rot_shift2D from sp_statistics import ccc from time import time from sp_alignment import align2d stack = args[0] new_stack = args[1] d = EMData.read_images(stack) try: sxprint("Using 2D alignment parameters from header.") ttt = d[0].get_attr('xform.params2d') for i in range(len(d)): alpha, sx, sy, mirror, scale = get_params2D(d[i]) d[i] = rot_shift2D(d[i], alpha, sx, sy, mirror) except: pass nx = d[0].get_xsize() ny = d[0].get_ysize() if options.radius < 1: radius = old_div(nx, 2) - 2 else: radius = options.radius mask = model_circle(radius, nx, ny) init = options.initial if init > -1: sxprint(" initial image: %d" % init) temp = d[init].copy() temp.write_image(new_stack, 0) del d[init] k = 1 lsum = 0.0 while len(d) > 1: maxcit = -111. for i in range(len(d)): cuc = ccc(d[i], temp, mask) if cuc > maxcit: maxcit = cuc qi = i # sxprint k, maxcit lsum += maxcit temp = d[qi].copy() del d[qi] temp.write_image(new_stack, k) k += 1 sxprint(lsum) d[0].write_image(new_stack, k) else: if options.circular: sxprint("Using options.circular, no alignment") # figure the "best circular" starting image maxsum = -1.023 for m in range(len(d)): indc = list(range(len(d))) lsnake = [-1] * (len(d) + 1) lsnake[0] = m lsnake[-1] = m del indc[m] temp = d[m].copy() lsum = 0.0 direction = +1 k = 1 while len(indc) > 1: maxcit = -111. for i in range(len(indc)): cuc = ccc(d[indc[i]], temp, mask) if cuc > maxcit: maxcit = cuc qi = indc[i] lsnake[k] = qi lsum += maxcit del indc[indc.index(qi)] direction = -direction for i in range(1, len(d)): if (direction > 0): if (lsnake[i] == -1): temp = d[lsnake[i - 1]].copy() # print " forw ",lsnake[i-1] k = i break else: if (lsnake[len(d) - i] == -1): temp = d[lsnake[len(d) - i + 1]].copy() # print " back ",lsnake[len(d) - i +1] k = len(d) - i break lsnake[lsnake.index(-1)] = indc[-1] # print " initial image and lsum ",m,lsum # print lsnake if (lsum > maxsum): maxsum = lsum init = m snake = [lsnake[i] for i in range(len(d))] sxprint(" Initial image selected : ", init, maxsum) sxprint(lsnake) for m in range(len(d)): d[snake[m]].write_image(new_stack, m) else: # figure the "best" starting image sxprint("Straight chain, no alignment") maxsum = -1.023 for m in range(len(d)): indc = list(range(len(d))) lsnake = [m] del indc[m] temp = d[m].copy() lsum = 0.0 while len(indc) > 1: maxcit = -111. for i in range(len(indc)): cuc = ccc(d[indc[i]], temp, mask) if cuc > maxcit: maxcit = cuc qi = indc[i] lsnake.append(qi) lsum += maxcit temp = d[qi].copy() del indc[indc.index(qi)] lsnake.append(indc[-1]) # sxprint " initial image and lsum ",m,lsum # sxprint lsnake if (lsum > maxsum): maxsum = lsum init = m snake = [lsnake[i] for i in range(len(d))] sxprint(" Initial image selected : ", init, maxsum) sxprint(lsnake) for m in range(len(d)): d[snake[m]].write_image(new_stack, m)
def main(): from sp_utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help= "range for translation search in x direction, search is +/xr (default 2,1)" ) parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)" ) parser.add_option("--thld_err", type="float", default=0.7, help="threshld of pixel error (default = 0.75)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option( "--fl", type="float", default=0.45, help= "cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)" ) parser.add_option( "--aa", type="float", default=0.2, help= "fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option("--verbose", action="store_true", default=False, help="print individual pixel error (default = False)") parser.add_option( "--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)") parser.add_option( "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)") (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() from sp_applications import within_group_refinement, ali2d_ras from sp_pixel_error import multi_align_stability from sp_utilities import write_text_file, write_text_row sp_global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx / 2 - 2 from sp_utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF: from sp_filter import filt_ctf for im in range(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in range(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \ maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \ maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method) from sp_utilities import info #print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii) """ avet = class_data[0] from sp_utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1) sxprint("%4s %20s %20s %20s %30s %6.2f" % ("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of", options.thld_err)) sxprint("Average stat: %10d %20d %20.2f %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err)) if (len(stable_set) > 0): if options.stables: stab_mem = [[0, 0.0, 0] for j in range(len(stable_set))] for j in range(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from sp_fundamentals import rot_shift2D avet.to_zero() l = -1 sxprint("average parameters: angle, x-shift, y-shift, mirror") for j in stable_set_id: l += 1 sxprint(" %4d %4d %12.2f %12.2f %12.2f %1d" % (l, j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]))) avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) avet /= (l + 1) avet.set_attr('members', stable_set_id) avet.set_attr('pix_err', pix_err) avet.set_attr('pixerr', particle_pixerr) avet.write_image(args[1]) sp_global_def.BATCH = False