コード例 #1
0
ファイル: test_basic_load.py プロジェクト: slonik-az/spaCy
 def test_load(self):
     data_dir = English.default_data_dir()
     if path.exists(path.join(data_dir, 'vocab')):
         vocab = Vocab.from_dir(path.join(data_dir, 'vocab'))
     if path.exists(path.join(data_dir, 'deps')):
         parser = Parser.from_dir(path.join(data_dir, 'deps'),
                                  vocab.strings, ArcEager)
コード例 #2
0
    def test_create(self):
        vocab = Vocab()
        templates = ((1, ), )
        labels_by_action = {0: ['One', 'Two'], 1: ['Two', 'Three']}
        transition_system = ArcEager(vocab.strings, labels_by_action)
        model = Model(vocab.morphology.n_tags, templates, model_loc=None)

        parser = Parser(vocab.strings, transition_system, model)
コード例 #3
0
ファイル: train_ud.py プロジェクト: Arttii/spaCy
    def from_dir(cls, tag_map, model_dir):
        vocab = Vocab(tag_map=tag_map, get_lex_attr=Language.default_lex_attrs())
        tokenizer = Tokenizer(vocab, {}, None, None, None)
        tagger = Tagger.blank(vocab, TAGGER_TEMPLATES)

        cfg = Config.read(path.join(model_dir, 'deps'), 'config')
        parser = Parser.from_dir(path.join(model_dir, 'deps'), vocab.strings, ArcEager)
        return cls(vocab, tokenizer, tagger, parser)
コード例 #4
0
ファイル: conll_train.py プロジェクト: slonik-az/spaCy
def train(Language,
          gold_tuples,
          model_dir,
          n_iter=15,
          feat_set=u'basic',
          seed=0,
          gold_preproc=False,
          force_gold=False):
    dep_model_dir = path.join(model_dir, 'deps')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(pos_model_dir)

    Config.write(dep_model_dir,
                 'config',
                 features=feat_set,
                 seed=seed,
                 labels=ArcEager.get_labels(gold_tuples))

    nlp = Language(data_dir=model_dir,
                   tagger=False,
                   parser=False,
                   entity=False)
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)

    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for _, sents in gold_tuples:
            for annot_tuples, _ in sents:
                if len(annot_tuples[1]) == 1:
                    continue

                score_model(scorer, nlp, None, annot_tuples, verbose=False)

                tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples, make_projective=True)
                if not gold.is_projective:
                    raise Exception(
                        "Non-projective sentence in training, after we should "
                        "have enforced projectivity: %s" % annot_tuples)

                loss += nlp.parser.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f' %
              (itn, loss, scorer.uas, scorer.tags_acc, scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
コード例 #5
0
ファイル: train_ud.py プロジェクト: slonik-az/spaCy
    def from_dir(cls, tag_map, model_dir):
        vocab = Vocab(tag_map=tag_map,
                      get_lex_attr=Language.default_lex_attrs())
        tokenizer = Tokenizer(vocab, {}, None, None, None)
        tagger = Tagger.blank(vocab, TAGGER_TEMPLATES)

        cfg = Config.read(path.join(model_dir, 'deps'), 'config')
        parser = Parser.from_dir(path.join(model_dir, 'deps'), vocab.strings,
                                 ArcEager)
        return cls(vocab, tokenizer, tagger, parser)
コード例 #6
0
ファイル: conll_train.py プロジェクト: Arttii/spaCy
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic', seed=0,
          gold_preproc=False, force_gold=False):
    dep_model_dir = path.join(model_dir, 'deps')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(pos_model_dir)

    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
                 labels=ArcEager.get_labels(gold_tuples))

    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
 
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for _, sents in gold_tuples:
            for annot_tuples, _ in sents:
                if len(annot_tuples[1]) == 1:
                    continue

                score_model(scorer, nlp, None, annot_tuples, verbose=False)

                tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples, make_projective=True)
                if not gold.is_projective:
                    raise Exception(
                        "Non-projective sentence in training, after we should "
                        "have enforced projectivity: %s" % annot_tuples
                    )
 
                loss += nlp.parser.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas,
                                             scorer.tags_acc, scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
コード例 #7
0
ファイル: train.py プロジェクト: michigan-com/spaCy
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
          seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
          beam_width=1, verbose=False,
          use_orig_arc_eager=False):
    dep_model_dir = path.join(model_dir, 'deps')
    ner_model_dir = path.join(model_dir, 'ner')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(ner_model_dir):
        shutil.rmtree(ner_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(ner_model_dir)
    os.mkdir(pos_model_dir)

    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
                 labels=ArcEager.get_labels(gold_tuples),
                 beam_width=beam_width)
    Config.write(ner_model_dir, 'config', features='ner', seed=seed,
                 labels=BiluoPushDown.get_labels(gold_tuples),
                 beam_width=0)

    if n_sents > 0:
        gold_tuples = gold_tuples[:n_sents]

    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
    nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for raw_text, sents in gold_tuples:
            if gold_preproc:
                raw_text = None
            else:
                sents = _merge_sents(sents)
            for annot_tuples, ctnt in sents:
                if len(annot_tuples[1]) == 1:
                    continue
                score_model(scorer, nlp, raw_text, annot_tuples,
                            verbose=verbose if itn >= 2 else False)
                if raw_text is None:
                    words = add_noise(annot_tuples[1], corruption_level)
                    tokens = nlp.tokenizer.tokens_from_list(words)
                else:
                    raw_text = add_noise(raw_text, corruption_level)
                    tokens = nlp.tokenizer(raw_text)
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples, make_projective=True)
                if not gold.is_projective:
                    raise Exception(
                        "Non-projective sentence in training, after we should "
                        "have enforced projectivity: %s" % annot_tuples
                    )
                loss += nlp.parser.train(tokens, gold)
                nlp.entity.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
                                                   scorer.tags_acc,
                                                   scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
コード例 #8
0
ファイル: train.py プロジェクト: Develer/spaCy
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
          seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
          beam_width=1, verbose=False,
          use_orig_arc_eager=False, pseudoprojective=False):
    dep_model_dir = path.join(model_dir, 'deps')
    ner_model_dir = path.join(model_dir, 'ner')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(ner_model_dir):
        shutil.rmtree(ner_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(ner_model_dir)
    os.mkdir(pos_model_dir)

    if pseudoprojective:
        # preprocess training data here before ArcEager.get_labels() is called
        gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)

    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
                 labels=ArcEager.get_labels(gold_tuples),
                 beam_width=beam_width,projectivize=pseudoprojective)
    Config.write(ner_model_dir, 'config', features='ner', seed=seed,
                 labels=BiluoPushDown.get_labels(gold_tuples),
                 beam_width=0)

    if n_sents > 0:
        gold_tuples = gold_tuples[:n_sents]

    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
    if nlp.lang == 'de':
        nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string])
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
    nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for raw_text, sents in gold_tuples:
            if gold_preproc:
                raw_text = None
            else:
                sents = _merge_sents(sents)
            for annot_tuples, ctnt in sents:
                if len(annot_tuples[1]) == 1:
                    continue
                score_model(scorer, nlp, raw_text, annot_tuples,
                            verbose=verbose if itn >= 2 else False)
                if raw_text is None:
                    words = add_noise(annot_tuples[1], corruption_level)
                    tokens = nlp.tokenizer.tokens_from_list(words)
                else:
                    raw_text = add_noise(raw_text, corruption_level)
                    tokens = nlp.tokenizer(raw_text)
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples)
                if not gold.is_projective:
                    raise Exception("Non-projective sentence in training: %s" % annot_tuples[1])
                loss += nlp.parser.train(tokens, gold)
                nlp.entity.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
                                                   scorer.tags_acc,
                                                   scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
コード例 #9
0
ファイル: test_basic_load.py プロジェクト: mlh14/spaCy
 def test_load(self):
     data_dir = English.default_data_dir()
     vocab = Vocab.from_dir(path.join(data_dir, 'vocab'))
     parser = Parser.from_dir(path.join(data_dir, 'deps'), vocab.strings, ArcEager)
コード例 #10
0
ファイル: test_basic_load.py プロジェクト: slonik-az/spaCy
    def test_load_careful(self):
        config_data = {
            "labels": {
                "0": {
                    "": True
                },
                "1": {
                    "": True
                },
                "2": {
                    "cc": True,
                    "agent": True,
                    "ccomp": True,
                    "prt": True,
                    "meta": True,
                    "nsubjpass": True,
                    "csubj": True,
                    "conj": True,
                    "dobj": True,
                    "neg": True,
                    "csubjpass": True,
                    "mark": True,
                    "auxpass": True,
                    "advcl": True,
                    "aux": True,
                    "ROOT": True,
                    "prep": True,
                    "parataxis": True,
                    "xcomp": True,
                    "nsubj": True,
                    "nummod": True,
                    "advmod": True,
                    "punct": True,
                    "relcl": True,
                    "quantmod": True,
                    "acomp": True,
                    "compound": True,
                    "pcomp": True,
                    "intj": True,
                    "poss": True,
                    "npadvmod": True,
                    "case": True,
                    "attr": True,
                    "dep": True,
                    "appos": True,
                    "det": True,
                    "nmod": True,
                    "amod": True,
                    "dative": True,
                    "pobj": True,
                    "expl": True,
                    "predet": True,
                    "preconj": True,
                    "oprd": True,
                    "acl": True
                },
                "3": {
                    "cc": True,
                    "agent": True,
                    "ccomp": True,
                    "prt": True,
                    "meta": True,
                    "nsubjpass": True,
                    "csubj": True,
                    "conj": True,
                    "acl": True,
                    "poss": True,
                    "neg": True,
                    "mark": True,
                    "auxpass": True,
                    "advcl": True,
                    "aux": True,
                    "amod": True,
                    "ROOT": True,
                    "prep": True,
                    "parataxis": True,
                    "xcomp": True,
                    "nsubj": True,
                    "nummod": True,
                    "advmod": True,
                    "punct": True,
                    "quantmod": True,
                    "acomp": True,
                    "pcomp": True,
                    "intj": True,
                    "relcl": True,
                    "npadvmod": True,
                    "case": True,
                    "attr": True,
                    "dep": True,
                    "appos": True,
                    "det": True,
                    "nmod": True,
                    "dobj": True,
                    "dative": True,
                    "pobj": True,
                    "iobj": True,
                    "expl": True,
                    "predet": True,
                    "preconj": True,
                    "oprd": True
                },
                "4": {
                    "ROOT": True
                }
            },
            "seed": 0,
            "features": "basic",
            "beam_width": 1
        }

        data_dir = English.default_data_dir()
        vocab = Vocab.from_dir(path.join(data_dir, 'vocab'))

        moves = ArcEager(vocab.strings, config_data['labels'])
        templates = get_templates(config_data['features'])

        model = Model(moves.n_moves, templates, path.join(data_dir, 'deps'))

        parser = Parser(vocab.strings, moves, model)