def custom_train( lang, output_path, train_path, dev_path, raw_text=None, base_model=None, pipeline="tagger,parser,ner", vectors=None, n_iter=30, n_early_stopping=None, n_examples=0, use_gpu=-1, version="0.0.0", meta_path=None, init_tok2vec=None, parser_multitasks="", entity_multitasks="", noise_level=0.0, orth_variant_level=0.0, eval_beam_widths="", gold_preproc=False, learn_tokens=False, textcat_multilabel=False, textcat_arch="bow", textcat_positive_label=None, verbose=False, debug=False, ): """ Train or update a spaCy model. Requires data to be formatted in spaCy's JSON format. To convert data from other formats, use the `spacy convert` command. """ # temp fix to avoid import issues cf https://github.com/explosion/spaCy/issues/4200 import tqdm msg = Printer() util.fix_random_seed() util.set_env_log(verbose) # Make sure all files and paths exists if they are needed train_path = util.ensure_path(train_path) dev_path = util.ensure_path(dev_path) meta_path = util.ensure_path(meta_path) output_path = util.ensure_path(output_path) if raw_text is not None: raw_text = list(srsly.read_jsonl(raw_text)) if not train_path or not train_path.exists(): msg.fail("Training data not found", train_path, exits=1) if not dev_path or not dev_path.exists(): msg.fail("Development data not found", dev_path, exits=1) if meta_path is not None and not meta_path.exists(): msg.fail("Can't find model meta.json", meta_path, exits=1) meta = srsly.read_json(meta_path) if meta_path else {} if output_path.exists() and [ p for p in output_path.iterdir() if p.is_dir() ]: msg.warn( "Output directory is not empty", "This can lead to unintended side effects when saving the model. " "Please use an empty directory or a different path instead. If " "the specified output path doesn't exist, the directory will be " "created for you.", ) if not output_path.exists(): output_path.mkdir() # Take dropout and batch size as generators of values -- dropout # starts high and decays sharply, to force the optimizer to explore. # Batch size starts at 1 and grows, so that we make updates quickly # at the beginning of training. dropout_rates = util.decaying( util.env_opt("dropout_from", 0.2), util.env_opt("dropout_to", 0.2), util.env_opt("dropout_decay", 0.0), ) batch_sizes = util.compounding( util.env_opt("batch_from", 100.0), util.env_opt("batch_to", 1000.0), util.env_opt("batch_compound", 1.001), ) if not eval_beam_widths: eval_beam_widths = [1] else: eval_beam_widths = [int(bw) for bw in eval_beam_widths.split(",")] if 1 not in eval_beam_widths: eval_beam_widths.append(1) eval_beam_widths.sort() has_beam_widths = eval_beam_widths != [1] # Set up the base model and pipeline. If a base model is specified, load # the model and make sure the pipeline matches the pipeline setting. If # training starts from a blank model, intitalize the language class. pipeline = [p.strip() for p in pipeline.split(",")] msg.text("Training pipeline: {}".format(pipeline)) if base_model: msg.text("Starting with base model '{}'".format(base_model)) nlp = util.load_model(base_model) if nlp.lang != lang: msg.fail( "Model language ('{}') doesn't match language specified as " "`lang` argument ('{}') ".format(nlp.lang, lang), exits=1, ) nlp.disable_pipes([p for p in nlp.pipe_names if p not in pipeline]) for pipe in pipeline: if pipe not in nlp.pipe_names: if pipe == "parser": pipe_cfg = {"learn_tokens": learn_tokens} elif pipe == "textcat": pipe_cfg = { "exclusive_classes": not textcat_multilabel, "architecture": textcat_arch, "positive_label": textcat_positive_label, } else: pipe_cfg = {} nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg)) else: if pipe == "textcat": textcat_cfg = nlp.get_pipe("textcat").cfg base_cfg = { "exclusive_classes": textcat_cfg["exclusive_classes"], "architecture": textcat_cfg["architecture"], "positive_label": textcat_cfg["positive_label"], } pipe_cfg = { "exclusive_classes": not textcat_multilabel, "architecture": textcat_arch, "positive_label": textcat_positive_label, } if base_cfg != pipe_cfg: msg.fail( "The base textcat model configuration does" "not match the provided training options. " "Existing cfg: {}, provided cfg: {}".format( base_cfg, pipe_cfg), exits=1, ) else: msg.text("Starting with blank model '{}'".format(lang)) lang_cls = util.get_lang_class(lang) ### Here are our modifications: lang_cls.Defaults.tag_map = custom_tag_map nlp = lang_cls() assert nlp.vocab.morphology.n_tags == 36 ### for pipe in pipeline: if pipe == "parser": pipe_cfg = {"learn_tokens": learn_tokens} elif pipe == "textcat": pipe_cfg = { "exclusive_classes": not textcat_multilabel, "architecture": textcat_arch, "positive_label": textcat_positive_label, } else: pipe_cfg = {} nlp.add_pipe(nlp.create_pipe(pipe, config=pipe_cfg)) if vectors: msg.text("Loading vector from model '{}'".format(vectors)) _load_vectors(nlp, vectors) # Multitask objectives multitask_options = [("parser", parser_multitasks), ("ner", entity_multitasks)] for pipe_name, multitasks in multitask_options: if multitasks: if pipe_name not in pipeline: msg.fail("Can't use multitask objective without '{}' in the " "pipeline".format(pipe_name)) pipe = nlp.get_pipe(pipe_name) for objective in multitasks.split(","): pipe.add_multitask_objective(objective) # Prepare training corpus msg.text("Counting training words (limit={})".format(n_examples)) corpus = GoldCorpus(train_path, dev_path, limit=n_examples) n_train_words = corpus.count_train() if base_model: # Start with an existing model, use default optimizer optimizer = create_default_optimizer(Model.ops) else: # Start with a blank model, call begin_training optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) nlp._optimizer = None # Load in pretrained weights if init_tok2vec is not None: components = _load_pretrained_tok2vec(nlp, init_tok2vec) msg.text("Loaded pretrained tok2vec for: {}".format(components)) # Verify textcat config if "textcat" in pipeline: textcat_labels = nlp.get_pipe("textcat").cfg["labels"] if textcat_positive_label and textcat_positive_label not in textcat_labels: msg.fail( "The textcat_positive_label (tpl) '{}' does not match any " "label in the training data.".format(textcat_positive_label), exits=1, ) if textcat_positive_label and len(textcat_labels) != 2: msg.fail( "A textcat_positive_label (tpl) '{}' was provided for training " "data that does not appear to be a binary classification " "problem with two labels.".format(textcat_positive_label), exits=1, ) train_docs = corpus.train_docs( nlp, noise_level=noise_level, gold_preproc=gold_preproc, max_length=0, ignore_misaligned=True, ) train_labels = set() if textcat_multilabel: multilabel_found = False for text, gold in train_docs: train_labels.update(gold.cats.keys()) if list(gold.cats.values()).count(1.0) != 1: multilabel_found = True if not multilabel_found and not base_model: msg.warn("The textcat training instances look like they have " "mutually-exclusive classes. Remove the flag " "'--textcat-multilabel' to train a classifier with " "mutually-exclusive classes.") if not textcat_multilabel: for text, gold in train_docs: train_labels.update(gold.cats.keys()) if list(gold.cats.values()).count(1.0) != 1 and not base_model: msg.warn( "Some textcat training instances do not have exactly " "one positive label. Modifying training options to " "include the flag '--textcat-multilabel' for classes " "that are not mutually exclusive.") nlp.get_pipe("textcat").cfg["exclusive_classes"] = False textcat_multilabel = True break if base_model and set(textcat_labels) != train_labels: msg.fail( "Cannot extend textcat model using data with different " "labels. Base model labels: {}, training data labels: " "{}.".format(textcat_labels, list(train_labels)), exits=1, ) if textcat_multilabel: msg.text( "Textcat evaluation score: ROC AUC score macro-averaged across " "the labels '{}'".format(", ".join(textcat_labels))) elif textcat_positive_label and len(textcat_labels) == 2: msg.text("Textcat evaluation score: F1-score for the " "label '{}'".format(textcat_positive_label)) elif len(textcat_labels) > 1: if len(textcat_labels) == 2: msg.warn( "If the textcat component is a binary classifier with " "exclusive classes, provide '--textcat_positive_label' for " "an evaluation on the positive class.") msg.text( "Textcat evaluation score: F1-score macro-averaged across " "the labels '{}'".format(", ".join(textcat_labels))) else: msg.fail( "Unsupported textcat configuration. Use `spacy debug-data` " "for more information.") # fmt: off row_head, output_stats = _configure_training_output( pipeline, use_gpu, has_beam_widths) row_widths = [len(w) for w in row_head] row_settings = { "widths": row_widths, "aligns": tuple(["r" for i in row_head]), "spacing": 2 } # fmt: on print("") msg.row(row_head, **row_settings) msg.row(["-" * width for width in row_settings["widths"]], **row_settings) try: iter_since_best = 0 best_score = 0.0 for i in range(n_iter): train_docs = corpus.train_docs( nlp, noise_level=noise_level, orth_variant_level=orth_variant_level, gold_preproc=gold_preproc, max_length=0, ignore_misaligned=True, ) if raw_text: random.shuffle(raw_text) raw_batches = util.minibatch( (nlp.make_doc(rt["text"]) for rt in raw_text), size=8) words_seen = 0 with tqdm.tqdm(total=n_train_words, leave=False) as pbar: losses = {} for batch in util.minibatch_by_words(train_docs, size=batch_sizes): if not batch: continue docs, golds = zip(*batch) nlp.update( docs, golds, sgd=optimizer, drop=next(dropout_rates), losses=losses, ) if raw_text: # If raw text is available, perform 'rehearsal' updates, # which use unlabelled data to reduce overfitting. raw_batch = list(next(raw_batches)) nlp.rehearse(raw_batch, sgd=optimizer, losses=losses) if not int(os.environ.get("LOG_FRIENDLY", 0)): pbar.update(sum(len(doc) for doc in docs)) words_seen += sum(len(doc) for doc in docs) with nlp.use_params(optimizer.averages): util.set_env_log(False) epoch_model_path = output_path / ("model%d" % i) nlp.to_disk(epoch_model_path) nlp_loaded = util.load_model_from_path(epoch_model_path) for beam_width in eval_beam_widths: for name, component in nlp_loaded.pipeline: if hasattr(component, "cfg"): component.cfg["beam_width"] = beam_width dev_docs = list( corpus.dev_docs( nlp_loaded, gold_preproc=gold_preproc, ignore_misaligned=True, )) nwords = sum(len(doc_gold[0]) for doc_gold in dev_docs) start_time = timer() scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose) end_time = timer() if use_gpu < 0: gpu_wps = None cpu_wps = nwords / (end_time - start_time) else: gpu_wps = nwords / (end_time - start_time) with Model.use_device("cpu"): nlp_loaded = util.load_model_from_path( epoch_model_path) for name, component in nlp_loaded.pipeline: if hasattr(component, "cfg"): component.cfg["beam_width"] = beam_width dev_docs = list( corpus.dev_docs( nlp_loaded, gold_preproc=gold_preproc, ignore_misaligned=True, )) start_time = timer() scorer = nlp_loaded.evaluate(dev_docs, verbose=verbose) end_time = timer() cpu_wps = nwords / (end_time - start_time) acc_loc = output_path / ("model%d" % i) / "accuracy.json" srsly.write_json(acc_loc, scorer.scores) # Update model meta.json meta["lang"] = nlp.lang meta["pipeline"] = nlp.pipe_names meta["spacy_version"] = ">=%s" % about.__version__ if beam_width == 1: meta["speed"] = { "nwords": nwords, "cpu": cpu_wps, "gpu": gpu_wps, } meta["accuracy"] = scorer.scores else: meta.setdefault("beam_accuracy", {}) meta.setdefault("beam_speed", {}) meta["beam_accuracy"][beam_width] = scorer.scores meta["beam_speed"][beam_width] = { "nwords": nwords, "cpu": cpu_wps, "gpu": gpu_wps, } meta["vectors"] = { "width": nlp.vocab.vectors_length, "vectors": len(nlp.vocab.vectors), "keys": nlp.vocab.vectors.n_keys, "name": nlp.vocab.vectors.name, } meta.setdefault("name", "model%d" % i) meta.setdefault("version", version) meta["labels"] = nlp.meta["labels"] meta_loc = output_path / ("model%d" % i) / "meta.json" srsly.write_json(meta_loc, meta) util.set_env_log(verbose) progress = _get_progress( i, losses, scorer.scores, output_stats, beam_width=beam_width if has_beam_widths else None, cpu_wps=cpu_wps, gpu_wps=gpu_wps, ) if i == 0 and "textcat" in pipeline: textcats_per_cat = scorer.scores.get( "textcats_per_cat", {}) for cat, cat_score in textcats_per_cat.items(): if cat_score.get("roc_auc_score", 0) < 0: msg.warn( "Textcat ROC AUC score is undefined due to " "only one value in label '{}'.".format( cat)) msg.row(progress, **row_settings) # Early stopping if n_early_stopping is not None: current_score = _score_for_model(meta) if current_score < best_score: iter_since_best += 1 else: iter_since_best = 0 best_score = current_score if iter_since_best >= n_early_stopping: msg.text("Early stopping, best iteration " "is: {}".format(i - iter_since_best)) msg.text("Best score = {}; Final iteration " "score = {}".format(best_score, current_score)) break finally: with nlp.use_params(optimizer.averages): final_model_path = output_path / "model-final" nlp.to_disk(final_model_path) msg.good("Saved model to output directory", final_model_path) with msg.loading("Creating best model..."): best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names) msg.good("Created best model", best_model_path)
def main( ud_dir, parses_dir, corpus, config=None, limit=0, gpu_device=-1, vectors_dir=None, use_oracle_segments=False, ): Token.set_extension("get_conllu_lines", method=get_token_conllu) Token.set_extension("begins_fused", default=False) Token.set_extension("inside_fused", default=False) spacy.util.fix_random_seed() lang.zh.Chinese.Defaults.use_jieba = False lang.ja.Japanese.Defaults.use_janome = False if config is not None: config = Config.load(config, vectors_dir=vectors_dir) else: config = Config(vectors_dir=vectors_dir) paths = TreebankPaths(ud_dir, corpus) if not (parses_dir / corpus).exists(): (parses_dir / corpus).mkdir() print("Train and evaluate", corpus, "using lang", paths.lang) nlp = load_nlp(paths.lang, config, vectors=vectors_dir) docs, golds = read_data( nlp, paths.train.conllu.open(encoding="utf8"), paths.train.text.open(encoding="utf8"), max_doc_length=config.max_doc_length, limit=limit, ) optimizer = initialize_pipeline(nlp, docs, golds, config, gpu_device) batch_sizes = compounding(config.min_batch_size, config.max_batch_size, 1.001) beam_prob = compounding(0.2, 0.8, 1.001) for i in range(config.nr_epoch): docs, golds = read_data( nlp, paths.train.conllu.open(encoding="utf8"), paths.train.text.open(encoding="utf8"), max_doc_length=config.max_doc_length, limit=limit, oracle_segments=use_oracle_segments, raw_text=not use_oracle_segments, ) Xs = list(zip(docs, golds)) random.shuffle(Xs) if config.batch_by_words: batches = minibatch_by_words(Xs, size=batch_sizes) else: batches = minibatch(Xs, size=batch_sizes) losses = {} n_train_words = sum(len(doc) for doc in docs) with tqdm.tqdm(total=n_train_words, leave=False) as pbar: for batch in batches: batch_docs, batch_gold = zip(*batch) pbar.update(sum(len(doc) for doc in batch_docs)) nlp.parser.cfg["beam_update_prob"] = next(beam_prob) nlp.update( batch_docs, batch_gold, sgd=optimizer, drop=config.dropout, losses=losses, ) out_path = parses_dir / corpus / "epoch-{i}.conllu".format(i=i) with nlp.use_params(optimizer.averages): if use_oracle_segments: parsed_docs, scores = evaluate(nlp, paths.dev.conllu, paths.dev.conllu, out_path) else: parsed_docs, scores = evaluate(nlp, paths.dev.text, paths.dev.conllu, out_path) print_progress(i, losses, scores)
def main( ud_dir, parses_dir, corpus, config=None, limit=0, gpu_device=-1, vectors_dir=None, use_oracle_segments=False, ): spacy.util.fix_random_seed() lang.zh.Chinese.Defaults.use_jieba = False lang.ja.Japanese.Defaults.use_janome = False if config is not None: config = Config.load(config, vectors_dir=vectors_dir) else: config = Config(vectors_dir=vectors_dir) paths = TreebankPaths(ud_dir, corpus) if not (parses_dir / corpus).exists(): (parses_dir / corpus).mkdir() print("Train and evaluate", corpus, "using lang", paths.lang) nlp = load_nlp(paths.lang, config, vectors=vectors_dir) docs, golds = read_data( nlp, paths.train.conllu.open(), paths.train.text.open(), max_doc_length=config.max_doc_length, limit=limit, ) optimizer = initialize_pipeline(nlp, docs, golds, config, gpu_device) batch_sizes = compounding(config.min_batch_size, config.max_batch_size, 1.001) beam_prob = compounding(0.2, 0.8, 1.001) for i in range(config.nr_epoch): docs, golds = read_data( nlp, paths.train.conllu.open(), paths.train.text.open(), max_doc_length=config.max_doc_length, limit=limit, oracle_segments=use_oracle_segments, raw_text=not use_oracle_segments, ) Xs = list(zip(docs, golds)) random.shuffle(Xs) if config.batch_by_words: batches = minibatch_by_words(Xs, size=batch_sizes) else: batches = minibatch(Xs, size=batch_sizes) losses = {} n_train_words = sum(len(doc) for doc in docs) with tqdm.tqdm(total=n_train_words, leave=False) as pbar: for batch in batches: batch_docs, batch_gold = zip(*batch) pbar.update(sum(len(doc) for doc in batch_docs)) nlp.parser.cfg["beam_update_prob"] = next(beam_prob) nlp.update( batch_docs, batch_gold, sgd=optimizer, drop=config.dropout, losses=losses, ) out_path = parses_dir / corpus / "epoch-{i}.conllu".format(i=i) with nlp.use_params(optimizer.averages): if use_oracle_segments: parsed_docs, scores = evaluate( nlp, paths.dev.conllu, paths.dev.conllu, out_path ) else: parsed_docs, scores = evaluate( nlp, paths.dev.text, paths.dev.conllu, out_path ) print_progress(i, losses, scores)