コード例 #1
0
def test_proteomeStatistics():

    s = summary.Summary(dataPath + 'annotation.pklz')

    s.proteomeStatistics(dataPath + "expression", dataPath + "expression_case")
    proteome = [x for x in io.readTable("proteome_features.tsv")]

    assert len(proteome) == 20
    txs = [
        x['Transcript'] for x in proteome if x['Feature_type'] == 'Transcript'
    ]
    assert len(txs) == len(set(txs))

    # ENSG00.5 is complete, as it only lacks information of its two aberrant transcripts
    assert [x for x in proteome if x['GeneId'] == 'ENSG00.5']

    assert len([x for x in proteome if x['Feature_type'] == 'Prosite']) == 3
    assert len([x for x in proteome if x['Feature_type'] == 'Pfam']) == 3

    # ENST08.1 goes first in the file, and both have same median
    assert len([
        x for x in proteome
        if x['Transcript'] == 'ENST08.1' and x['Feature_type'] != 'Transcript'
    ]) == 2
    assert len([x for x in proteome if x['Transcript'] == 'ENST09.1']) == 0

    assert len([
        x for x in proteome
        if x['Transcript'] == 'ENST18.3' and x['Feature_type'] != 'Transcript'
    ]) == 1

    os.remove('proteome_features.tsv')
コード例 #2
0
    def getDomainInteractions(self, ddi):

        if self._new and not ddi:
            raise SpadaError(
                "A file containing the domain-domain interactions must be provided."
            )
        elif not ddi:
            self.logger.info(
                "Domain-domain interactions from the provided network will be used."
            )
            return

        self.logger.info("Building isoform-isoform interaction network.")
        allDDIs = {
            frozenset([x['Pfam1'], x['Pfam2']])
            for x in io.readTable(ddi, keys=['Pfam1', 'Pfam2'])
        }
        gene2tx = io.getGene2Tx(self._txs)

        for gene1, gene2 in self._genes._net.edges():
            for tx1, tx2 in product(gene2tx.get(gene1, set()),
                                    gene2tx.get(gene2, set())):

                possibleDDIs = {
                    frozenset(x)
                    for x in product(self._txs[tx1]["Pfam"], self._txs[tx2]
                                     ["Pfam"])
                }
                matches = possibleDDIs & allDDIs

                if matches:
                    self._txs.add_edge(tx1, tx2, ddi=matches)
コード例 #3
0
ファイル: test_io.py プロジェクト: hclimente/spada
def test_printSwitches():

	g = get_switches.GetSwitches(dataPath + 'annotation.pklz')
	g.run(dataPath + 'switches')

	io.printSwitches(g._genes, g._txs)

	switches = [ x for x in io.readTable("switches_spada.tsv") ]

	assert len(switches) == 8

	os.remove("switches_spada.tsv")
コード例 #4
0
def test_ppiAnalysis():

    s = structural_analysis.StructuralAnalysis((g._genes, g._txs))

    s.ppiAnalysis()

    ddi = [x for x in io.readTable("ppi_analysis.tsv")]
    assert len(ddi) == 6
    assert len([x for x in ddi if x['What'] == "Unaffected"]) == 2
    assert len([x for x in ddi if x['What'] == "Affected"]) == 2
    assert len([x for x in ddi if x['What'] == "Lost_in_cases"]) == 1
    assert len([x for x in ddi if x['What'] == "Gained_in_cases"]) == 1

    os.remove("ppi_analysis.tsv")
コード例 #5
0
    def addAberrant(self, aberrant):

        if aberrant:

            self.logger.info("Import aberrant isoforms absent in GTF.")

            prev = self._txs.skip_filter
            self._txs.skip_filter = True

            for line in io.readTable(aberrant, keys=['GeneId', 'Transcript']):
                self._txs.add_node(line['Transcript'], line['GeneId'])
                self._txs.update_node(line["Transcript"], "canonical", False)

            self._txs.skip_filter = prev
コード例 #6
0
    def readSwitches(self, switchesFile, tx_network):
        """Import a set of genes with an isoform switch from candidateList.tsv.
		"""
        self.logger.debug("Retrieving calculated isoform switches.")

        for line in io.readTable(switchesFile):
            gene = line['GeneId']
            ctrl = line['Control_transcript']
            case = line['Case_transcript']
            samples = set(line['Samples'].split(','))

            if self.valid_switch(gene, ctrl, case, tx_network):

                thisSwitch = LiteSwitch(ctrl, case, samples)
                self.update_node("switches", thisSwitch, full_name=gene)
コード例 #7
0
    def getIsoformFeatures(self, features):

        if self._new and not features:
            raise SpadaError(
                "A file with the protein features must be provided.")
        elif not features:
            self.logger.info(
                "Protein features from the provided network will be used.")
            return

        self.logger.info("Reading isoform features.")

        featureFields = [
            'Transcript', 'Feature_type', 'Feature', 'Start', 'End'
        ]
        for line in io.readTable(features, keys=featureFields):

            tx = line['Transcript']
            featureType = line['Feature_type']
            feature = line['Feature']
            start = int(line['Start'])
            end = int(line['End'])

            self._txs.update_node(tx, featureType, (start, end), feature)
コード例 #8
0
def test_featureAnalysis():

    s = structural_analysis.StructuralAnalysis((g._genes, g._txs))
    s.featureAnalysis()

    # pfams
    pfam = [x for x in io.readTable("pfam_analysis.tsv")]
    assert len(pfam) == 8
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST01.2" and x['Case_transcript'] ==
        "ENST02.2" and x['What'] == "Nothing" and x['Feature'] == "D1"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST01.2" and x['Case_transcript'] ==
        "ENST02.2" and x['What'] == "Lost_in_cases" and x['Feature'] == "D1"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST01.2" and x['Case_transcript'] ==
        "ENST02.2" and x['What'] == "Gained_in_cases" and x['Feature'] == "D4"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST01.2" and x['Case_transcript'] ==
        "ENST02.2" and x['What'] == "Gained_in_cases" and x['Feature'] == "D2"
    ]

    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST02.2" and x['Case_transcript'] ==
        "ENST01.2" and x['What'] == "Nothing" and x['Feature'] == "D1"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST02.2" and x['Case_transcript'] ==
        "ENST01.2" and x['What'] == "Gained_in_cases" and x['Feature'] == "D1"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST02.2" and x['Case_transcript'] ==
        "ENST01.2" and x['What'] == "Lost_in_cases" and x['Feature'] == "D4"
    ]
    assert [
        x for x in pfam
        if x['Control_transcript'] == "ENST02.2" and x['Case_transcript'] ==
        "ENST01.2" and x['What'] == "Lost_in_cases" and x['Feature'] == "D2"
    ]

    # prosite
    prosite = [x for x in io.readTable("prosite_analysis.tsv")]
    assert len(prosite) == 3
    assert [
        x for x in prosite
        if x['Control_transcript'] == "ENST08.1" and x['Case_transcript'] ==
        "ENST09.1" and x['What'] == "Nothing" and x['Feature'] == "P1"
    ]
    assert [
        x for x in prosite
        if x['Control_transcript'] == "ENST08.1" and x['Case_transcript'] ==
        "ENST09.1" and x['What'] == "Lost_in_cases" and x['Feature'] == "P1"
    ]
    assert [
        x for x in prosite
        if x['Control_transcript'] == "ENST08.1" and x['Case_transcript'] ==
        "ENST09.1" and x['What'] == "Gained_in_cases" and x['Feature'] == "P2"
    ]

    # idr
    idr = [x for x in io.readTable("idr_analysis.tsv")]
    assert len(idr) == 6
    assert [
        x for x in idr
        if x['Control_transcript'] == "ENST16.2" and x['Case_transcript'] ==
        "ENST14.5" and x['What'] == "Lost_in_cases" and x['Sequence'] == "ABcd"
    ]
    assert len([
        x for x in idr if x['Control_transcript'] == "ENST16.2"
        and x['Case_transcript'] == "ENST14.5"
    ]) == 1

    os.remove("pfam_analysis.tsv")
    os.remove("prosite_analysis.tsv")
    os.remove("idr_analysis.tsv")