コード例 #1
0
    def test_buildtfgraphforname(self):
        """"
        Run the graph produced by _buildtfgraphforname using tensorflow and compare to keras result.
        """
        imageArray = self.imageArray
        kerasPredict = self.kerasPredict
        modelGraphInfo = _buildTFGraphForName(self.name, False)
        graph = modelGraphInfo["graph"]
        sess = tf.Session(graph=graph)
        with sess.as_default():
            inputTensor = graph.get_tensor_by_name(modelGraphInfo["inputTensorName"])
            outputTensor = graph.get_tensor_by_name(modelGraphInfo["outputTensorName"])
            tfPredict = sess.run(outputTensor, {inputTensor: imageArray})

        self.assertEqual(kerasPredict.shape, tfPredict.shape)
        np.testing.assert_array_almost_equal(kerasPredict, tfPredict)
コード例 #2
0
    def test_buildtfgraphforname(self):
        """"
        Run the graph produced by _buildtfgraphforname using tensorflow and compare to keras result.
        """
        imageArray = self.imageArray
        kerasPredict = self.kerasPredict
        modelGraphInfo = _buildTFGraphForName(self.name, False)
        graph = modelGraphInfo["graph"]
        sess = tf.Session(graph=graph)
        with sess.as_default():
            inputTensor = graph.get_tensor_by_name(
                modelGraphInfo["inputTensorName"])
            outputTensor = graph.get_tensor_by_name(
                modelGraphInfo["outputTensorName"])
            tfPredict = sess.run(outputTensor, {inputTensor: imageArray})

        self.assertEqual(kerasPredict.shape, tfPredict.shape)
        np.testing.assert_array_almost_equal(kerasPredict, tfPredict)
コード例 #3
0
    def test_inceptionV3_prediction(self):
        """
        Test inceptionV3 using keras, tensorflow and sparkDL

        We run the sparkDL test with and without resizing beforehand
        """
        imgFiles, images = getSampleImageList()
        imageArray = np.empty((len(images), 299, 299, 3), 'uint8')
        for i, img in enumerate(images):
            assert img is not None and img.mode == "RGB"
            imageArray[i] = np.array(img.resize((299, 299)))

        # Basic keras flow
        # We predict the class probabilities for the images in our test library using keras API.
        prepedImaged = inception_v3.preprocess_input(
            imageArray.astype('float32'))
        model = inception_v3.InceptionV3()
        kerasPredict = model.predict(prepedImaged)

        # test: _buildTfGraphForName
        # Run the graph produced by _buildTfGraphForName and compare the result to above keras
        # result.
        modelGraphInfo = _buildTFGraphForName("InceptionV3", False)
        graph = modelGraphInfo["graph"]
        sess = tf.Session(graph=graph)
        with sess.as_default():
            inputTensor = graph.get_tensor_by_name(
                modelGraphInfo["inputTensorName"])
            outputTensor = graph.get_tensor_by_name(
                modelGraphInfo["outputTensorName"])
            tfPredict = sess.run(outputTensor, {inputTensor: imageArray})

        self.assertEqual(kerasPredict.shape, tfPredict.shape)
        np.testing.assert_array_almost_equal(kerasPredict, tfPredict)

        imageType = imageIO.pilModeLookup["RGB"]

        def rowWithImage(img):
            # return [imageIO.imageArrayToStruct(img.astype('uint8'), imageType.sparkMode)]
            row = imageIO.imageArrayToStruct(img.astype('uint8'),
                                             imageType.sparkMode)
            # re-order row to avoid pyspark bug
            return [[
                getattr(row, field.name) for field in imageIO.imageSchema
            ]]

        # test: predictor vs keras on resized images
        # Run sparkDL inceptionV3 transformer on resized images and compare result to above keras
        # result.
        rdd = self.sc.parallelize([rowWithImage(img) for img in imageArray])
        dfType = StructType([StructField("image", imageIO.imageSchema)])
        imageDf = rdd.toDF(dfType)

        transformer = DeepImagePredictor(
            inputCol='image',
            modelName="InceptionV3",
            outputCol="prediction",
        )
        dfPredict = transformer.transform(imageDf).collect()
        dfPredict = np.array([i.prediction for i in dfPredict])

        self.assertEqual(kerasPredict.shape, dfPredict.shape)
        np.testing.assert_array_almost_equal(kerasPredict, dfPredict)

        # test: predictor vs keras on raw images
        # Run sparkDL inceptionV3 transformer on raw (original size) images and compare result to
        # above keras (using keras resizing) result.
        origImgDf = getSampleImageDF()
        fullPredict = transformer.transform(origImgDf).collect()
        fullPredict = np.array([i.prediction for i in fullPredict])

        self.assertEqual(kerasPredict.shape, fullPredict.shape)
        # We use a large tolerance below because of differences in the resize step
        # TODO: match keras resize step to get closer prediction
        np.testing.assert_array_almost_equal(kerasPredict,
                                             fullPredict,
                                             decimal=6)