def test_adam_optimizer_options(): processed = generate_random_data() mg = build_graph(create_random_model) options = build_adam_config(learning_rate=0.1, beta1=0.85, beta2=0.98, epsilon=1e-8) spark_model = SparkAsyncDL( inputCol='features', tensorflowGraph=mg, tfInput='x:0', tfLabel='y:0', tfOutput='outer/Sigmoid:0', tfOptimizer='adam', tfLearningRate=.1, iters=25, partitions=4, predictionCol='predicted', labelCol='label', optimizerOptions=options ) handle_assertions(spark_model, processed)
# create spark session and train with final_df spark = SparkSession.builder \ .appName(task+'flow') \ .getOrCreate() # sc.stop() ## stop? mg = build_graph(small_model) #Assemble and one hot encode va = VectorAssembler(inputCols=final_df.columns[1:151], outputCol='features') encoded = OneHotEncoder(inputCol='result', outputCol='labels', dropLast=False) adam_config = build_adam_config(learning_rate=0.001, beta1=0.9, beta2=0.999) spark_model = SparkAsyncDL(inputCol='features', tensorflowGraph=mg, tfInput='x:0', tfLabel='y:0', tfOutput='out:0', tfLearningRate=.001, iters=20, predictionCol='predicted', labelCol='labels', verbose=1, optimizerOptions=adam_config) ckptpath = os.path.join(ckptdir, task)