コード例 #1
0
ファイル: torch_model.py プロジェクト: sailfish009/molmimic
 def v(depth, nPlanes):
     m = scn.Sequential()
     if depth == 1:
         for _ in range(reps):
             res(m, nPlanes, nPlanes, dropout_p)
     else:
         m = scn.Sequential()
         for _ in range(reps):
             res(m, nPlanes, nPlanes, dropout_p)
         if dropout_width:
             m.add(scn.ConcatTable().add(scn.Identity()).add(
                 scn.Sequential().add(scn.BatchNormReLU(nPlanes)).add(
                     #In place of Maxpooling
                     scn.Convolution(
                         dimension, nPlanes, nPlanes, 2, 2,
                         False)).add(scn.Dropout(dropout_p)).add(
                             v(depth - 1, nPlanes)).add(
                                 scn.BatchNormReLU(nPlanes)).add(
                                     scn.Deconvolution(
                                         dimension, nPlanes, nPlanes, 2, 2,
                                         False))))
         else:
             m.add(scn.ConcatTable().add(scn.Identity()).add(
                 scn.Sequential().add(scn.BatchNormReLU(nPlanes)).add(
                     scn.Convolution(dimension, nPlanes, nPlanes, 2, 2,
                                     False)).add(v(depth - 1, nPlanes)).add(
                                         scn.BatchNormReLU(nPlanes)).add(
                                             scn.Deconvolution(
                                                 dimension, nPlanes,
                                                 nPlanes, 2, 2, False))))
         m.add(scn.JoinTable())
         for i in range(reps):
             res(m, 2 * nPlanes if i == 0 else nPlanes, nPlanes, dropout_p)
     return m
コード例 #2
0
 def block(self, nPlanes, n, reps, stride):
     m = scn.Sequential()
     for rep in range(reps):
         if rep == 0:
             m.add(scn.BatchNormReLU(nPlanes))
             m.add(scn.ConcatTable().add(self.residual(
                 nPlanes, n, stride)).add(scn.Sequential().add(
                     scn.SubmanifoldConvolution(self.dimension, nPlanes, n,
                                                3, False) if stride ==
                     1 else scn.Convolution(
                         self.dimension, nPlanes, n, 2, stride, False)).add(
                             scn.BatchNormReLU(n)).add(
                                 scn.SubmanifoldConvolution(
                                     self.dimension, n, n, 3, False))))
         else:
             m.add(scn.ConcatTable().add(scn.Sequential().add(
                 scn.BatchNormReLU(nPlanes)).add(
                     scn.SubmanifoldConvolution(
                         self.dimension, nPlanes, n, 3,
                         False)).add(scn.BatchNormReLU(n)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, n, n, 3,
                                 False))).add(scn.Identity()))
         m.add(scn.AddTable())
         nPlanes = n
     return m
コード例 #3
0
 def block(self, n_in, n_out):
     m = scn.Sequential()
     if self.residual_blocks:  # ResNet style blocks
         m.add(scn.ConcatTable().add(
             scn.Identity() if n_in ==
             n_out else scn.NetworkInNetwork(n_in, n_out, False)).add(
                 scn.Sequential().add(
                     scn.BatchNormLeakyReLU(
                         n_in, leakiness=self.leakiness)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, n_in, n_out, 3,
                                 False)).add(
                                     scn.BatchNormLeakyReLU(
                                         n_out,
                                         leakiness=self.leakiness)).add(
                                             scn.SubmanifoldConvolution(
                                                 self.dimension, n_out,
                                                 n_out, 3, False))))
         m.add(scn.AddTable())
     else:  # VGG style blocks
         m.add(scn.BatchNormLeakyReLU(n_in, leakiness=self.leakiness))
         m.add(
             scn.SubmanifoldConvolution(self.dimension, n_in, n_out, 3,
                                        False))
     return m
コード例 #4
0
def residual_block(m, a, b, leakiness=0.01, dimensions=2):
    """
    append to a sequence module:
    produce output of [identity,3x3+3x3] then add together

    inputs
    ------
    m [scn.Sequential module] network to add layers to
    a [int]: number of input channels
    b [int]: number of output channels
    leakiness [float]: leakiness of ReLU activations
    dimensions [int]: dimensions of input sparse tensor

    modifies
    --------
    m: adds layers
    """
    m.add(scn.ConcatTable().add(scn.Identity(
    ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
        scn.Sequential().add(scn.BatchNormLeakyReLU(
            a, leakiness=leakiness)).add(
                scn.SubmanifoldConvolution(dimensions, a, b, 3, False)).add(
                    scn.BatchNormLeakyReLU(b, leakiness=leakiness)).add(
                        scn.SubmanifoldConvolution(
                            dimensions, b, b, 3, False)))).add(scn.AddTable())
コード例 #5
0
    def __init__(self, inplanes, outplanes, batch_norm, leaky_relu):
        nn.Module.__init__(self)

        self.batch_norm = batch_norm
        self.leaky_relu = leaky_relu

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
            nIn         = inplanes,
            nOut        = outplanes,
            filter_size = 3,
            bias=False)

        if self.batch_norm:
            if self.leaky_relu: self.bn1 = scn.BatchNormLeakyReLU(outplanes)
            else:                self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
            nIn         = outplanes,
            nOut        = outplanes,
            filter_size = 3,
            bias        = False)

        if self.batch_norm:
            self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()

        if self.leaky_relu: self.relu = scn.LeakyReLU()
        else:                self.relu = scn.ReLU()

        self.add = scn.AddTable()
コード例 #6
0
    def __init__(self, inplanes, outplanes, nplanes=1):
        nn.Module.__init__(self)
        
        
        self.conv1 = scn.SubmanifoldConvolution(dimension=3, 
            nIn         = inplanes, 
            nOut        = outplanes, 
            filter_size = [nplanes,3,3], 
            bias=False)
        

        # if FLAGS.BATCH_NORM:
        self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3, 
            nIn         = outplanes,
            nOut        = outplanes,
            filter_size = [nplanes,3,3],
            bias        = False)

        # if FLAGS.BATCH_NORM:
        self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()
        self.relu = scn.ReLU()

        self.add = scn.AddTable()
コード例 #7
0
 def __init__(self, nf_in, nf, input_sparsetensor, return_sparsetensor,
              max_data_size):
     nn.Module.__init__(self)
     data_dim = 3
     self.nf_in = nf_in
     self.nf = nf
     self.input_sparsetensor = input_sparsetensor
     self.return_sparsetensor = return_sparsetensor
     self.max_data_size = max_data_size
     if not self.input_sparsetensor:
         self.p0 = scn.InputLayer(data_dim, self.max_data_size, mode=0)
     self.p1 = scn.SubmanifoldConvolution(data_dim,
                                          nf_in,
                                          nf,
                                          filter_size=FSIZE0,
                                          bias=False)
     self.p2 = scn.Sequential()
     self.p2.add(scn.ConcatTable().add(scn.Identity()).add(
         scn.Sequential().add(scn.BatchNormReLU(nf)).add(
             scn.SubmanifoldConvolution(
                 data_dim, nf, nf, FSIZE0,
                 False)).add(scn.BatchNormReLU(nf)).add(
                     scn.SubmanifoldConvolution(data_dim, nf, nf, FSIZE0,
                                                False)))).add(
                                                    scn.AddTable())
     self.p2.add(scn.BatchNormReLU(nf))
     # downsample space by factor of 2
     self.p3 = scn.Sequential().add(
         scn.Convolution(data_dim, nf, nf, FSIZE1, 2, False))
     self.p3.add(scn.BatchNormReLU(nf))
     if not self.return_sparsetensor:
         self.p4 = scn.SparseToDense(data_dim, nf)
コード例 #8
0
 def residual(nIn, nOut, stride):
     if stride > 1:
         return scn.Convolution(dimension, nIn, nOut, 3, stride, False)
     elif nIn != nOut:
         return scn.NetworkInNetwork(nIn, nOut, False)
     else:
         return scn.Identity()
コード例 #9
0
ファイル: fpn_net.py プロジェクト: zhupan007/Detection_3D
 def block(m, a, b):
     if residual_blocks:  #ResNet style blocks
         m.add(scn.ConcatTable().add(scn.Identity(
         ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
             scn.Sequential().add(
                 scn.BatchNormLeakyReLU(
                     a,
                     momentum=bn_momentum,
                     leakiness=leakiness,
                     track_running_stats=track_running_stats)
             ).add(scn.SubmanifoldConvolution(
                 dimension, a, b, 3, False)).add(
                     scn.BatchNormLeakyReLU(
                         b,
                         momentum=bn_momentum,
                         leakiness=leakiness,
                         track_running_stats=track_running_stats)).add(
                             scn.SubmanifoldConvolution(
                                 dimension, b, b, 3,
                                 False)))).add(scn.AddTable())
     else:  #VGG style blocks
         m.add(scn.Sequential().add(
             scn.BatchNormLeakyReLU(
                 a,
                 momentum=bn_momentum,
                 leakiness=leakiness,
                 track_running_stats=track_running_stats)).add(
                     scn.SubmanifoldConvolution(dimension, a, b, 3,
                                                False)))
     operation = {'kernel': [1, 1, 1], 'stride': [1, 1, 1]}
     return operation
コード例 #10
0
ファイル: FE_own.py プロジェクト: pancho111203/tDBN
    def block(self,
              m,
              a,
              b,
              dimension=3,
              residual_blocks=False,
              leakiness=0,
              kernel_size=3,
              use_batch_norm=True):  # default using residual_block
        if use_batch_norm:
            Activation = lambda channels: scn.BatchNormLeakyReLU(
                channels, leakiness=leakiness)
        else:
            Activation = lambda channels: scn.LeakyReLU(leakiness)

        if residual_blocks:  #ResNet style blocks
            m.add(scn.ConcatTable().add(scn.Identity(
            ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
                scn.Sequential().add(Activation(a)).add(
                    scn.SubmanifoldConvolution(dimension, a, b, kernel_size,
                                               False)).add(Activation(b)).add(
                                                   scn.SubmanifoldConvolution(
                                                       dimension, b, b,
                                                       kernel_size,
                                                       False)))).add(
                                                           scn.AddTable())
        else:  #VGG style blocks
            m.add(scn.Sequential().add(Activation(a)).add(
                scn.SubmanifoldConvolution(dimension, a, b, kernel_size,
                                           False)))
コード例 #11
0
    def __init__(self, inplanes, outplanes, bias, batch_norm):
        nn.Module.__init__(self)

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=inplanes,
                                                nOut=outplanes,
                                                filter_size=3,
                                                bias=bias)

        if batch_norm:
            self.activation1 = scn.BatchNormReLU(outplanes, momentum=0.5)
        else:
            self.activation1 = scn.ReLU()

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=outplanes,
                                                nOut=outplanes,
                                                filter_size=3,
                                                bias=bias)

        if batch_norm:
            self.activation2 = scn.BatchNormReLU(outplanes, momentum=0.5)
        else:
            self.activation2 = scn.ReLU()

        self.residual = scn.Identity()

        self.add = scn.AddTable()
コード例 #12
0
ファイル: layer_utils.py プロジェクト: LArbys/ublarcvserver
def residual_block(m, ninputchs, noutputchs, leakiness=0.01, dimensions=2):
    """
    Residual Modulae Block

    intention is to append to a sequence module (m)
    produce output of [identity,3x3+3x3] then add together

    inputs
    ------
    m [scn.Sequential module] network to add layers to
    ninputchs   [int]: number of input channels
    noutputchs  [int]: number of output channels
    leakiness [float]: leakiness of ReLU activations
    dimensions  [int]: dimensions of input sparse tensor

    modifies
    --------
    m: adds layers
    """
    inoutsame = ninputchs == noutputchs
    m.add(scn.ConcatTable().add(
        scn.Identity() if inoutsame else scn.
        NetworkInNetwork(ninputchs, noutputchs, False)).add(
            scn.Sequential().add(
                scn.BatchNormLeakyReLU(ninputchs, leakiness=leakiness)).add(
                    scn.SubmanifoldConvolution(
                        dimensions, ninputchs, noutputchs, 3, False)).add(
                            scn.BatchNormLeakyReLU(
                                noutputchs, leakiness=leakiness)).add(
                                    scn.SubmanifoldConvolution(
                                        dimensions, noutputchs, noutputchs, 3,
                                        False)))).add(scn.AddTable())
コード例 #13
0
 def U(nPlanes, n_input_planes=-1):  #Recursive function
     m = scn.Sequential()
     for i in range(reps):
         block(m, n_input_planes if n_input_planes != -1 else nPlanes[0],
               nPlanes[0])
         n_input_planes = -1
     if len(nPlanes) > 1:
         m.add(scn.ConcatTable().add(scn.Identity()).add(
             scn.Sequential().add(
                 scn.BatchNormLeakyReLU(
                     nPlanes[0], leakiness=leakiness)).add(
                         scn.Convolution(dimension, nPlanes[0], nPlanes[1],
                                         downsample[0], downsample[1],
                                         False)).add(U(nPlanes[1:])).add(
                                             scn.BatchNormLeakyReLU(
                                                 nPlanes[1],
                                                 leakiness=leakiness)).add(
                                                     scn.Deconvolution(
                                                         dimension,
                                                         nPlanes[1],
                                                         nPlanes[0],
                                                         downsample[0],
                                                         downsample[1],
                                                         False))))
         m.add(scn.JoinTable())
         for i in range(reps):
             block(m, nPlanes[0] * (2 if i == 0 else 1), nPlanes[0])
     return m
コード例 #14
0
    def __init__(self, *, inplanes, outplanes, nplanes=1, params):
        nn.Module.__init__(self)

        self.conv1 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=inplanes,
                                                nOut=outplanes,
                                                filter_size=[nplanes, 3, 3],
                                                bias=params.use_bias)

        self.do_batch_norm = False
        if params.batch_norm:
            self.do_batch_norm = True
            self.bn1 = scn.BatchNormReLU(outplanes)

        self.conv2 = scn.SubmanifoldConvolution(dimension=3,
                                                nIn=outplanes,
                                                nOut=outplanes,
                                                filter_size=[nplanes, 3, 3],
                                                bias=False)

        if params.batch_norm:
            self.bn2 = scn.BatchNormalization(outplanes)

        self.residual = scn.Identity()
        self.relu = scn.ReLU()

        self.add = scn.AddTable()
コード例 #15
0
def res(m, dimension, a, b):
    m.add(scn.ConcatTable()
          .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
          .add(scn.Sequential()
               .add(scn.BatchNormReLU(a))
               .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False))
               .add(scn.BatchNormReLU(b))
               .add(scn.SubmanifoldConvolution(dimension, b, b, 3, False))))\
     .add(scn.AddTable())
コード例 #16
0
 def block(m, a, b):  # ResNet style blocks
     m.add(scn.ConcatTable()
           .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
           .add(scn.Sequential()
             .add(scn.BatchNormLeakyReLU(a, leakiness=leakiness))
             .add(scn.SubmanifoldConvolution(self._dimension, a, b, 3, False))
             .add(scn.BatchNormLeakyReLU(b, leakiness=leakiness))
             .add(scn.SubmanifoldConvolution(self._dimension, b, b, 3, False)))
      ).add(scn.AddTable())
コード例 #17
0
def SparseResNet(dimension, nInputPlanes, layers):
    import sparseconvnet as scn
    """
    pre-activated ResNet
    e.g. layers = {{'basic',16,2,1},{'basic',32,2}}
    """
    nPlanes = nInputPlanes
    m = scn.Sequential()

    def residual(nIn, nOut, stride):
        if stride > 1:
            return scn.Convolution(dimension, nIn, nOut, 2, stride, False)
        elif nIn != nOut:
            return scn.NetworkInNetwork(nIn, nOut, False)
        else:
            return scn.Identity()

    for n, reps, stride in layers:
        for rep in range(reps):
            if rep == 0:
                m.add(scn.BatchNormReLU(nPlanes))
                tab = scn.ConcatTable()
                tab_seq = scn.Sequential()
                if stride == 1:
                    tab_seq.add(
                        scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                                   False))
                else:
                    tab_seq.add(
                        scn.Convolution(dimension, nPlanes, n, 2, stride,
                                        False))
                tab_seq.add(scn.BatchNormReLU(n))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, n, n, 3, False))
                tab.add(tab_seq)
                tab.add(residual(nPlanes, n, stride))
                m.add(tab)
            else:
                tab = scn.ConcatTable()
                tab_seq = scn.Sequential()
                tab_seq.add(scn.BatchNormReLU(nPlanes))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                               False))
                tab_seq.add(scn.BatchNormReLU(n))
                tab_seq.add(
                    scn.SubmanifoldConvolution(dimension, n, n, 3, False))
                tab.add(tab_seq)
                tab.add(scn.Identity())
                m.add(tab)
            nPlanes = n
            m.add(scn.AddTable())
    m.add(scn.BatchNormReLU(nPlanes))
    return m
コード例 #18
0
 def f(m, a, b):
     m.add(scn.ConcatTable().add(scn.Identity(
     ) if a == b else scn.NetworkInNetwork(a, b, self.allow_bias)).add(
         scn.Sequential().add(norm_layer(
             a, leakiness=self.leakiness)).add(
                 scn.SubmanifoldConvolution(
                     self.dimension, a, b, 3, self.allow_bias)).add(
                         norm_layer(b, leakiness=self.leakiness)).add(
                             scn.SubmanifoldConvolution(
                                 self.dimension, b, b, 3,
                                 self.allow_bias)))).add(scn.AddTable())
     return m
コード例 #19
0
 def decoder_block(self, nPlanes, n, reps, stride):
     m = scn.Sequential()
     for rep in range(reps):
         m.add(scn.ConcatTable().add(
             scn.Sequential().add(scn.BatchNormReLU(nPlanes)).add(
                 scn.SubmanifoldConvolution(self.dimension, nPlanes, n, 3,
                                            False))
             # .add(scn.BatchNormReLU(n))
             # .add(scn.SubmanifoldConvolution(dimension, n, n, 3, False))
         ).add(scn.Identity()))
         m.add(scn.AddTable())
         nPlanes = n
     return m
コード例 #20
0
 def block(m, a, b):
     if residual_blocks:  #ResNet style blocks
         m.add(scn.ConcatTable().add(scn.Identity(
         ) if a == b else scn.NetworkInNetwork(a, b, False)).add(
             scn.Sequential().add(scn.BatchNormReLU(a)).add(
                 scn.SubmanifoldConvolution(dimension, a, b, 3, False)).add(
                     scn.BatchNormReLU(b)).add(
                         scn.SubmanifoldConvolution(dimension, b, b, 3,
                                                    False)))).add(
                                                        scn.AddTable())
     else:  #VGG style blocks
         m.add(scn.Sequential().add(scn.BatchNormReLU(a)).add(
             scn.SubmanifoldConvolution(dimension, a, b, 3, False)))
コード例 #21
0
 def foo(m,np):
     for _ in range(reps):
         if residual: #ResNet style blocks
             m.add(scn.ConcatTable()
                   .add(scn.Identity())
                   .add(scn.Sequential()
                     .add(scn.BatchNormLeakyReLU(np,leakiness=leakiness))
                     .add(scn.SubmanifoldConvolution(dimension, np, np, 3, False))
                     .add(scn.BatchNormLeakyReLU(np,leakiness=leakiness))
                     .add(scn.SubmanifoldConvolution(dimension, np, np, 3, False)))
              ).add(scn.AddTable())
         else: #VGG style blocks
             m.add(scn.BatchNormLeakyReLU(np,leakiness=leakiness)
             ).add(scn.SubmanifoldConvolution(dimension, np, np, 3, False))
コード例 #22
0
 def block(self, m, a, b, dimension=3, residual_blocks=False, leakiness=0):  # default using residual_block
     if residual_blocks: #ResNet style blocks
         m.add(scn.ConcatTable()
               .add(scn.Identity() if a == b else scn.NetworkInNetwork(a, b, False))
               .add(scn.Sequential()
                 .add(scn.BatchNormLeakyReLU(a,leakiness=leakiness))
                 .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False))
                 .add(scn.BatchNormLeakyReLU(b,leakiness=leakiness))
                 .add(scn.SubmanifoldConvolution(dimension, b, b, 3, False)))
          ).add(scn.AddTable())
     else: #VGG style blocks
         m.add(scn.Sequential()
              .add(scn.BatchNormLeakyReLU(a,leakiness=leakiness))
              .add(scn.SubmanifoldConvolution(dimension, a, b, 3, False)))
コード例 #23
0
ファイル: ResNet_sparse.py プロジェクト: mmkekic/NEXT_torch
def SparseResNet(dimension, nInputPlanes, layers, mom=0.99):
    """
    pre-activated ResNet
    e.g. layers = {{'basic',16,2,1},{'basic',32,2}}
    """
    nPlanes = nInputPlanes
    m = scn.Sequential()

    def residual(nIn, nOut, stride):
        if stride > 1:
            return scn.Convolution(dimension, nIn, nOut, 3, stride, False)
        elif nIn != nOut:
            return scn.NetworkInNetwork(nIn, nOut, False)
        else:
            return scn.Identity()

    for blockType, n, reps, stride in layers:
        for rep in range(reps):
            if blockType[0] == 'b':  # basic block
                if rep == 0:
                    m.add(scn.BatchNormReLU(nPlanes, momentum=mom, eps=1e-5))
                    m.add(scn.ConcatTable().add(scn.Sequential().add(
                        scn.SubmanifoldConvolution(dimension, nPlanes, n, 3,
                                                   False) if stride ==
                        1 else scn.Convolution(
                            dimension, nPlanes, n, 3, stride, False)).add(
                                scn.BatchNormReLU(
                                    n, momentum=mom, eps=1e-5)).add(
                                        scn.SubmanifoldConvolution(
                                            dimension, n, n, 3, False))).add(
                                                residual(nPlanes, n, stride)))
                else:
                    m.add(scn.ConcatTable().add(scn.Sequential().add(
                        scn.BatchNormReLU(
                            nPlanes, momentum=mom, eps=1e-5)).add(
                                scn.SubmanifoldConvolution(
                                    dimension, nPlanes, n, 3, False)).add(
                                        scn.BatchNormReLU(
                                            n, momentum=mom, eps=1e-5)).add(
                                                scn.SubmanifoldConvolution(
                                                    dimension, n, n, 3,
                                                    False))).add(
                                                        scn.Identity()))
            nPlanes = n
            m.add(scn.AddTable())
    m.add(scn.BatchNormReLU(nPlanes, momentum=mom, eps=1e-5))
    return m
コード例 #24
0
 def U(nPlanes):  #Recursive function
     m = scn.Sequential()
     if len(nPlanes) == 1:
         for _ in range(reps):
             block(m, nPlanes[0], nPlanes[0])
     else:
         m = scn.Sequential()
         for _ in range(reps):
             block(m, nPlanes[0], nPlanes[0])
         m.add(scn.ConcatTable().add(scn.Identity()).add(
             scn.Sequential().add(scn.BatchNormReLU(nPlanes[0])).add(
                 scn.Convolution(dimension, nPlanes[0], nPlanes[1],
                                 downsample[0], downsample[1],
                                 False)).add(U(nPlanes[1:])).add(
                                     scn.UnPooling(dimension, downsample[0],
                                                   downsample[1]))))
         m.add(scn.JoinTable())
     return m
コード例 #25
0
 def __init__(self):
     super(Model, self).__init__()
     self.inputLayer = scn.InputLayer(dimension, spatial_size=512, mode=3)
     self.initialconv = scn.SubmanifoldConvolution(dimension, nPlanes, 64,
                                                   7, False)
     self.residual = scn.Identity()
     self.add = scn.AddTable()
     self.sparsebl11 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 64, 64, 3, False)).add(
             scn.BatchNormLeakyReLU(64)).add(
                 scn.SubmanifoldConvolution(dimension, 64, 64, 3, False))
     self.sparsebl12 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 64, 64, 3, False)).add(
             scn.BatchNormLeakyReLU(64)).add(
                 scn.SubmanifoldConvolution(dimension, 64, 64, 3, False))
     self.sparsebl21 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 128, 128, 3, False)).add(
             scn.BatchNormLeakyReLU(128)).add(
                 scn.SubmanifoldConvolution(dimension, 128, 128, 3, False))
     self.sparsebl22 = scn.Sequential().add(
         scn.SubmanifoldConvolution(dimension, 128, 128, 3, False)).add(
             scn.BatchNormLeakyReLU(128)).add(
                 scn.SubmanifoldConvolution(dimension, 128, 128, 3, False))
     self.relu1 = scn.LeakyReLU(64)
     self.relu2 = scn.LeakyReLU(128)
     self.downsample1 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 64, [2, 2, 2], [2, 2, 2],
                         False)).add(scn.BatchNormLeakyReLU(64))
     self.downsample2 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 128, [2, 2, 2], [2, 2, 2],
                         False)).add(scn.BatchNormLeakyReLU(128))
     self.downsample3 = scn.Sequential().add(
         scn.Convolution(dimension, 128, 64, [4, 4, 4], [4, 4, 4],
                         False)).add(scn.BatchNormLeakyReLU(64))
     self.downsample4 = scn.Sequential().add(
         scn.Convolution(dimension, 64, 2, [4, 4, 4], [4, 4, 4],
                         False)).add(scn.BatchNormLeakyReLU(2))
     self.sparsetodense = scn.SparseToDense(dimension, 2)
     self.dropout1 = nn.Dropout(0.5)
     self.dropout2 = nn.Dropout(0.5)
     self.linear2 = nn.Linear(2 * 8 * 8 * 8, 2)
     self.linear3 = nn.Linear(2, 1)
コード例 #26
0
 def _resnet_block(self, module, a, b):
     '''
     Utility Method for attaching ResNet-Style Blocks.
     INPUTS:
         - module (scn Module): network module to attach ResNet block.
         - a (int): number of input feature dimension
         - b (int): number of output feature dimension
     RETURNS:
         None (operation is in-place)
     '''
     module.add(scn.ConcatTable().add(scn.Identity(
     ) if a == b else scn.NetworkInNetwork(a, b, self.allow_bias)).add(
         scn.Sequential().add(
             scn.BatchNormLeakyReLU(a, leakiness=self.leakiness)).add(
                 scn.SubmanifoldConvolution(
                     self.dimension, a, b, 3, self.allow_bias)).add(
                         scn.BatchNormLeakyReLU(
                             b, leakiness=self.leakiness)).add(
                                 scn.SubmanifoldConvolution(
                                     self.dimension, b, b, 3,
                                     self.allow_bias)))).add(scn.AddTable())
コード例 #27
0
    def __init__(self, cfg, name='ynet_full'):
        super().__init__(cfg, name)

        self.model_config = cfg[name]
        self.num_filters = self.model_config.get('filters', 16)
        self.seed_dim = self.model_config.get('seed_dim', 1)
        self.sigma_dim = self.model_config.get('sigma_dim', 1)
        self.embedding_dim = self.model_config.get('embedding_dim', 3)
        self.inputKernel = self.model_config.get('input_kernel_size', 3)
        self.coordConv = self.model_config.get('coordConv', False)

        # YResNet Configurations
        # operation for mapping latent secondary features to primary features
        self.mapping_op = self.model_config.get('mapping_operation', 'pool')
        assert self.mapping_op in self.supported_mapping_ops

        # Network Freezing Options
        self.encoder_freeze = self.model_config.get('encoder_freeze', False)
        self.embedding_freeze = self.model_config.get('embedding_freeze',
                                                      False)
        self.seediness_freeze = self.model_config.get('seediness_freeze',
                                                      False)

        # Input Layer Configurations and commonly used scn operations.
        self.input = scn.Sequential().add(
            scn.InputLayer(self.dimension, self.spatial_size, mode=3)).add(
            scn.SubmanifoldConvolution(self.dimension, self.nInputFeatures, \
            self.num_filters, self.inputKernel, self.allow_bias)) # Kernel size 3, no bias
        self.add = scn.AddTable()

        # Preprocessing logic for secondary
        self.t_bn = scn.BatchNormLeakyReLU(1, leakiness=self.leakiness)
        self.netinnet = scn.Sequential()
        self._resnet_block(self.netinnet, 1, self.num_filters)

        # Timing information
        max_seq_len = self.model_config.get('max_seq_len', 5)
        self.pe = SinusoidalPositionalEncoding(max_seq_len, 1)

        # Backbone YResNet. Do NOT change namings!
        self.primary_encoder = YResNetEncoder(cfg, name='yresnet_encoder')
        self.secondary_encoder = YResNetEncoder(cfg, name='yresnet_encoder')

        if self.mapping_op == 'conv':
            self.mapping = ConvolutionalFeatureMapping(self.dimension,
                                                       self.nPlanes[-1],
                                                       self.nPlanes[-1], 2, 2,
                                                       False)
        elif self.mapping_op == 'pool':
            self.mapping = PoolFeatureMapping(
                self.dimension,
                2,
                2,
            )

        self.seed_net = YResNetDecoder(cfg, name='seediness_decoder')
        self.cluster_net = YResNetDecoder(cfg, name='embedding_decoder')

        # Encoder-Decoder 1x1 Connections
        encoder_planes = [i for i in self.primary_encoder.nPlanes]
        cluster_planes = [i for i in self.cluster_net.nPlanes]
        seed_planes = [i for i in self.seed_net.nPlanes]

        self.skip_mode = self.model_config.get('skip_mode', 'default')

        self.cluster_skip = scn.Sequential()
        self.seed_skip = scn.Sequential()

        # Output Layers
        self.output_cluster = scn.Sequential()
        self._nin_block(self.output_cluster, self.cluster_net.num_filters, 4)
        self.output_cluster.add(scn.OutputLayer(self.dimension))

        self.output_seediness = scn.Sequential()
        self._nin_block(self.output_seediness, self.seed_net.num_filters, 1)
        self.output_seediness.add(scn.OutputLayer(self.dimension))

        if self.skip_mode == 'default':
            for p1, p2 in zip(encoder_planes, cluster_planes):
                self.cluster_skip.add(scn.Identity())
            for p1, p2 in zip(encoder_planes, seed_planes):
                self.seed_skip.add(scn.Identity())

        elif self.skip_mode == '1x1':
            for p1, p2 in zip(encoder_planes, cluster_planes):
                self._nin_block(self.cluster_skip, p1, p2)

            for p1, p2 in zip(encoder_planes, seed_planes):
                self._nin_block(self.seed_skip, p1, p2)

        else:
            raise ValueError('Invalid skip connection mode!')

        # Freeze Layers
        if self.encoder_freeze:
            for p in self.encoder.parameters():
                p.requires_grad = False

        if self.embedding_freeze:
            for p in self.cluster_net.parameters():
                p.requires_grad = False
            for p in self.output_cluster.parameters():
                p.requires_grad = False

        if self.seediness_freeze:
            for p in self.seed_net.parameters():
                p.requires_grad = False
            for p in self.output_seediness.parameters():
                p.requires_grad = False

        # Pytorch Activations
        self.tanh = nn.Tanh()
        self.sigmoid = nn.Sigmoid()
コード例 #28
0
def get_identity(num_dims, sparse, input_channels, output_channels=None):
    assert input_channels == output_channels or output_channels is None
    stride = np.full(num_dims, 1)
    identity = scn.Identity() if sparse else nn.Identity()
    return sparse, stride, input_channels, identity
コード例 #29
0
    def __init__(self, cfg, name='unet_full'):
        super().__init__(cfg, name)

        self.model_config = cfg[name]
        self.num_filters = self.model_config.get('filters', 16)
        self.ghost = self.model_config.get('ghost', False)
        self.seed_dim = self.model_config.get('seed_dim', 1)
        self.sigma_dim = self.model_config.get('sigma_dim', 1)
        self.embedding_dim = self.model_config.get('embedding_dim', 3)
        self.num_classes = self.model_config.get('num_classes', 5)
        self.num_gnn_features = self.model_config.get('num_gnn_features', 16)
        self.inputKernel = self.model_config.get('input_kernel_size', 3)
        self.coordConv = self.model_config.get('coordConv', False)

        # Network Freezing Options
        self.encoder_freeze = self.model_config.get('encoder_freeze', False)
        self.ppn_freeze = self.model_config.get('ppn_freeze', False)
        self.segmentation_freeze = self.model_config.get('segmentation_freeze', False)
        self.embedding_freeze = self.model_config.get('embedding_freeze', False)
        self.seediness_freeze = self.model_config.get('seediness_freeze', False)

        # Input Layer Configurations and commonly used scn operations.
        self.input = scn.Sequential().add(
            scn.InputLayer(self.dimension, self.spatial_size, mode=3)).add(
            scn.SubmanifoldConvolution(self.dimension, self.nInputFeatures, \
            self.num_filters, self.inputKernel, self.allow_bias)) # Kernel size 3, no bias
        self.concat = scn.JoinTable()
        self.add = scn.AddTable()

        # Backbone UResNet. Do NOT change namings!
        self.encoder = UResNetEncoder(cfg, name='uresnet_encoder')

        # self.seg_net = UResNetDecoder(cfg, name='segmentation_decoder')
        self.seed_net = UResNetDecoder(cfg, name='seediness_decoder')
        self.cluster_net = UResNetDecoder(cfg, name='embedding_decoder')

        # Encoder-Decoder 1x1 Connections
        encoder_planes = [i for i in self.encoder.nPlanes]
        # seg_planes = [i for i in self.seg_net.nPlanes]
        cluster_planes = [i for i in self.cluster_net.nPlanes]
        seed_planes = [i for i in self.seed_net.nPlanes]

        # print("Encoder Planes: ", encoder_planes)
        # print("Seg Planes: ", seg_planes)
        # print("Cluster Planes: ", cluster_planes)
        # print("Seediness Planes: ", seed_planes)

        self.skip_mode = self.model_config.get('skip_mode', 'default')

        # self.seg_skip = scn.Sequential()
        self.cluster_skip = scn.Sequential()
        self.seed_skip = scn.Sequential()

        # print(self.seg_skip)
        # print(self.cluster_skip)
        # print(self.seed_skip)

        # Output Layers
        self.output_cluster = scn.Sequential()
        self._nin_block(self.output_cluster, self.cluster_net.num_filters, 4)
        self.output_cluster.add(scn.OutputLayer(self.dimension))

        self.output_seediness = scn.Sequential()
        self._nin_block(self.output_seediness, self.seed_net.num_filters, 1)
        self.output_seediness.add(scn.OutputLayer(self.dimension))

        '''
        self.output_segmentation = scn.Sequential()
        self._nin_block(self.output_segmentation, self.seg_net.num_filters, self.num_classes)
        self.output_segmentation.add(scn.OutputLayer(self.dimension))
        '''

        '''
        self.output_gnn_features = scn.Sequential()
        sum_filters = self.seg_net.num_filters + self.seed_net.num_filters + self.cluster_net.num_filters
        self._resnet_block(self.output_gnn_features, sum_filters, self.num_gnn_features)
        self._nin_block(self.output_gnn_features, self.num_gnn_features, self.num_gnn_features)
        self.output_gnn_features.add(scn.OutputLayer(self.dimension))
        '''

        if self.ghost:
            self.linear_ghost = scn.Sequential()
            self._nin_block(self.linear_ghost, self.num_filters, 2)
            # self.linear_ghost.add(scn.OutputLayer(self.dimension))

        # PPN
        # self.ppn  = PPN(cfg)

        if self.skip_mode == 'default':

            '''
            for p1, p2 in zip(encoder_planes, seg_planes):
                self.seg_skip.add(scn.Identity())
            '''

            for p1, p2 in zip(encoder_planes, cluster_planes):
                self.cluster_skip.add(scn.Identity())
            for p1, p2 in zip(encoder_planes, seed_planes):
                self.seed_skip.add(scn.Identity())
            '''
            self.ppn_transform = scn.Sequential()
            ppn1_num_filters = seg_planes[self.ppn.ppn1_stride-self.ppn._num_strides]
            self._nin_block(self.ppn_transform, encoder_planes[-1], ppn1_num_filters)
            '''

        elif self.skip_mode == '1x1':

            '''
            for p1, p2 in zip(encoder_planes, seg_planes):
                self._nin_block(self.seg_skip, p1, p2)
            '''

            for p1, p2 in zip(encoder_planes, cluster_planes):
                self._nin_block(self.cluster_skip, p1, p2)

            for p1, p2 in zip(encoder_planes, seed_planes):
                self._nin_block(self.seed_skip, p1, p2)

            # self.ppn_transform = scn.Identity()

        else:
            raise ValueError('Invalid skip connection mode!')

        # Freeze Layers
        if self.encoder_freeze:
            for p in self.encoder.parameters():
                p.requires_grad = False
            print('Encoder Freezed')

        '''
        if self.ppn_freeze:
            for p in self.ppn.parameters():
                p.requires_grad = False
            print('PPN Freezed')
        '''

        '''
        if self.segmentation_freeze:
            for p in self.seg_net.parameters():
                p.requires_grad = False
            for p in self.output_segmentation.parameters():
                p.requires_grad = False
            print('Segmentation Branch Freezed')
        '''

        if self.embedding_freeze:
            for p in self.cluster_net.parameters():
                p.requires_grad = False
            for p in self.output_cluster.parameters():
                p.requires_grad = False
            print('Clustering Branch Freezed')

        if self.seediness_freeze:
            for p in self.seed_net.parameters():
                p.requires_grad = False
            for p in self.output_seediness.parameters():
                p.requires_grad = False
            print('Seediness Branch Freezed')

        # Pytorch Activations
        self.tanh = nn.Tanh()
        self.sigmoid = nn.Sigmoid()