def test_ib_recommender(self): ctx = blob_ctx.get() rating_table = expr.sparse_rand((N_USERS, N_ITEMS), dtype=np.float64, density=0.1, format = "csr", tile_hint=(N_USERS, N_ITEMS/ctx.num_workers)) model = ItemBasedRecommender(rating_table) model.precompute()
def test_ib_recommender(self): ctx = blob_ctx.get() FLAGS.opt_auto_tiling = 0 rating_table = expr.sparse_rand( (N_USERS, N_ITEMS), dtype=np.float64, density=0.1, format="csr", tile_hint=(N_USERS, N_ITEMS / ctx.num_workers)) model = ItemBasedRecommender(rating_table) model.precompute()
def benchmark_ib_recommander(ctx, timer): print "#worker:", ctx.num_workers N_ITEMS = 800 N_USERS = 8000 rating_table = expr.sparse_rand((N_USERS, N_ITEMS), dtype=np.float64, density=0.1, format = "csr") t1 = datetime.now() model = ItemBasedRecommender(rating_table) model.precompute() t2 = datetime.now() cost_time = millis(t1, t2) print "total cost time:%s ms" % cost_time
def benchmark_ib_recommander(ctx, timer): print "#worker:", ctx.num_workers N_ITEMS = 800 N_USERS = 8000 rating_table = expr.sparse_rand((N_USERS, N_ITEMS), dtype=np.float64, density=0.1, format="csr") t1 = datetime.now() model = ItemBasedRecommender(rating_table) model.precompute() t2 = datetime.now() cost_time = millis(t1, t2) print "total cost time:%s ms" % cost_time