コード例 #1
0
    def __init__(self, value):
        """
        Create a new spatial vector (abstract superclass)

        :param value: Value of the

        - ``SpatialVector(vec)`` is a spatial vector constructed from the 6-element array-like ``vec``
        - ``SpatialVector([V1, V2, ... VN])`` is a spatial vector array with N elements, constructed from the 6-element
          array-like values ``Vi``
        - ``SpatialVector(A)`` is a spatial vector array with N elements, constructed from the columns of the 6xN
          array ``A``.

        """
        # print('spatialVec6 init')
        super().__init__()

        if base.isvector(value, 6):
            self.data = [np.array(value)]
        elif base.isvector(value, 3):
            self.data = [np.r_[value, 0, 0, 0]]
        elif isinstance(value, SpatialVector):
            self.data = [value.A]
        elif base.ismatrix(value, (6, None)):
            self.data = [x for x in value.T]
        elif not super().arghandler(value):
            raise ValueError('bad argument to constructor')
コード例 #2
0
    def __init__(self, arg=None, w=None, check=True):
        """
        Construct a new 2D Twist object

        :type a: 2-element array-like
        :return: 2D prismatic twist
        :rtype: Twist2 instance

        - ``Twist2(R)`` is a 2D Twist object representing the SO(2) rotation expressed as 
          a 2x2 matrix.
        - ``Twist2(T)`` is a 2D Twist object representing the SE(2) rigid-body motion expressed as 
          a 3x3 matrix.
        - ``Twist2(X)`` if X is an SO2 instance then create a 2D Twist object representing the SO(2) rotation,
          and if X is an SE2 instance then create a 2D Twist object representing the SE(2) motion
        - ``Twist2(V)`` is a  2D Twist object specified directly by a 3-element array-like comprising the
          moment vector (1 element) and direction vector (2 elements).
        """

        if w is None:
            # zero or one arguments passed
            if super().arghandler(arg, convertfrom=(SE2, ), check=check):
                return

            elif base.isvector(arg, 6):
                # Twist(array_like)
                self.data = [base.getvector(arg)]
                return

        elif w is not None and base.isvector(w, 1) and base.isvector(arg, 2):
            # Twist(v, w)
            self.data = [np.r_[arg, w]]
            return

        raise ValueError('bad twist value')
コード例 #3
0
    def I(self, I_new):  # noqa

        if ismatrix(I_new, (3, 3)):
            # 3x3 matrix passed
            if np.any(np.abs(I_new - I_new.T) > 1e-8):
                raise ValueError('3x3 matrix is not symmetric')

        elif isvector(I_new, 9):
            # 3x3 matrix passed as a 1d vector
            I_new = I_new.reshape(3, 3)
            if np.any(np.abs(I_new - I_new.T) > 1e-8):
                raise ValueError('3x3 matrix is not symmetric')

        elif isvector(I_new, 6):
            # 6-vector passed, moments and products of inertia,
            # [Ixx Iyy Izz Ixy Iyz Ixz]
            I_new = np.array([[I_new[0], I_new[3], I_new[5]],
                              [I_new[3], I_new[1], I_new[4]],
                              [I_new[5], I_new[4], I_new[2]]])

        elif isvector(I_new, 3):
            # 3-vector passed, moments of inertia [Ixx Iyy Izz]
            I_new = np.diag(I_new)

        else:
            raise ValueError('invalid shape passed: must be (3,3), (6,), (3,)')

        self._I = I_new
コード例 #4
0
    def __init__(self, arg=None, w=None, check=True):
        """
        Construct a new 3D twist object

        - ``Twist3()`` is a Twist3 instance representing null motion -- the
          identity twist
        - ``Twist3(S)`` is a Twist3 instance from an array-like (6,)
        - ``Twist3(v, w)`` is a Twist3 instance from a moment ``v`` (3,) and
          direction ``w`` (3,)
        - ``Twist3([S1, S2, ... SN])`` where each ``Si`` is a numpy array (6,)
        - ``Twist3(X)`` is a Twist3 instance with the same value as ``X``, ie.
          a copy
        - ``Twist3([X1, X2, ... XN])`` where each Xi is a Twist3 instance, is a
          Twist3 instance containing N motions

        """
        super().__init__()

        if w is None:
            # zero or one arguments passed
            if super().arghandler(arg, check=check):
                return
            elif isinstance(arg, SE3):
                self.data = [arg.twist().A]

        elif w is not None and base.isvector(w, 3) and base.isvector(arg, 3):
            # Twist(v, w)
            self.data = [np.r_[arg, w]]
            return

        else:
            raise ValueError('bad value to Twist constructor')
コード例 #5
0
    def __init__(self, arg=None, w=None, check=True):
        """
        Construct a new 3D twist object

        - ``Twist3()`` is a Twist3 instance representing null motion -- the
          identity twist
        - ``Twist3(t)`` is a Twist3 instance from an array-like (6,)
        - ``Twist3(v, w)`` is a Twist3 instance from a moment ``v`` (3,) and
           direction ``w`` (3,)
        - ``Twist3([t1, t2, ... tN])`` where each ti is a numpy array (6,)
        - ``Twist3([X1, X2, ... XN])`` where each Xi is a Twist3 instance, is a
          Twist3 instance containing N motions

        """
        super().__init__()

        if w is None:
            # zero or one arguments passed
            if super().arghandler(arg, convertfrom=(SE3, ), check=check):
                return

        elif w is not None and base.isvector(w, 3) and base.isvector(arg, 3):
            # Twist(v, w)
            self.data = [np.r_[arg, w]]
            return

        raise ValueError('bad twist value')
コード例 #6
0
    def __mul__(left, right):  # lgtm[py/not-named-self] pylint: disable=no-self-argument
        """
        Product of dual quaternion

        - ``dq1 * dq2`` is a dual quaternion representing the product of
          ``dq1`` and ``dq2``.  If both are unit dual quaternions, the product
          will be a unit dual quaternion.
        - ``dq * p`` transforms the point ``p`` (3) by the unit dual quaternion
          ``dq``.

        Example:

        .. runblock:: pycon

            >>> from spatialmath import DualQuaternion, Quaternion
            >>> d = DualQuaternion(Quaternion([1,2,3,4]), Quaternion([5,6,7,8]))
            >>> d * d
        """
        if isinstance(right, DualQuaternion):
            real = left.real * right.real
            dual = left.real * right.dual + left.dual * right.real

            if isinstance(left, UnitDualQuaternion) and isinstance(left, UnitDualQuaternion):
                return UnitDualQuaternion(real, dual)
            else:
                return DualQuaternion(real, dual)
        elif isinstance(left, UnitDualQuaternion) and base.isvector(right, 3):
            v = base.getvector(right, 3)
            vp = left * DualQuaternion.Pure(v) * left.conj()
            return vp.dual.v
コード例 #7
0
    def contains(self, x, tol=50 * _eps):
        """
        Test if points are on the line
        
        :param x: 3D point
        :type x: 3-element array_like, or numpy.ndarray, shape=(3,N)
        :param tol: Tolerance, defaults to 50*_eps
        :type tol: float, optional
        :raises ValueError: Bad argument
        :return: Whether point is on the line
        :rtype: bool or numpy.ndarray(N) of bool

        ``line.contains(X)`` is true if the point ``X`` lies on the line defined by
        the Plucker object self.
        
        If ``X`` is an array with 3 rows, the test is performed on every column and
        an array of booleans is returned.
        """
        if base.isvector(x, 3):
            x = base.getvector(x)
            return np.linalg.norm(np.cross(x - self.pp, self.w)) < tol
        elif base.ismatrix(x, (3, None)):
            return [
                np.linalg.norm(np.cross(_ - self.pp, self.w)) < tol
                for _ in x.T
            ]
        else:
            raise ValueError('bad argument')
コード例 #8
0
def e2h(v):
    """
    Convert from Euclidean to homogeneous form

    :param v: Euclidean vector or matrix
    :type v: array_like(n), ndarray(n,m)
    :return: homogeneous vector
    :rtype: ndarray(n+1,m)

    - If ``v`` is an N-vector, return an (N+1)-column vector where a value of 1 has
      been appended as the last element.
    - If ``v`` is a matrix (NxM), return a matrix (N+1xM), where each column has
      been appended with a value of 1, ie. a row of ones has been appended to the matrix.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> e2h([2, 4, 6])
        >>> e = np.c_[[1,2], [3,4], [5,6]]
        >>> e
        >>> e2h(e)

    .. note:: The result is always a 2D array, a 1D input results in a column vector.

    :seealso: e2h
    """
    if isinstance(v, np.ndarray) and len(v.shape) == 2:
        # dealing with matrix
        return np.vstack([v, np.ones((1, v.shape[1]))])

    elif base.isvector(v):
        # dealing with shape (N,) array
        v = base.getvector(v, out='col')
        return np.vstack((v, 1))
コード例 #9
0
    def Eul(cls, angles, *, unit='rad'):
        r"""
        Create an SE(3) pure rotation from Euler angles

        :param 𝚪: Euler angles
        :type 𝚪: array_like or numpy.ndarray with shape=(N,3)
        :param unit: angular units: 'rad' [default], or 'deg'
        :type unit: str
        :return: SE(3) matrix
        :rtype: SE3 instance

        ``SE3.Eul(𝚪)`` is an SE(3) rotation defined by a 3-vector of Euler
        angles :math:`\Gamma=(\phi, \theta, \psi)` which correspond to consecutive
        rotations about the Z, Y, Z axes respectively.

        If ``𝚪`` is an Nx3 matrix then the result is a sequence of
        rotations each defined by Euler angles corresponding to the rows of
        ``𝚪``.

        :seealso: :func:`~spatialmath.pose3d.SE3.eul`, :func:`~spatialmath.base.transforms3d.eul2r`
        :SymPy: supported
        """
        if base.isvector(angles, 3):
            return cls(base.eul2tr(angles, unit=unit), check=False)
        else:
            return cls([base.eul2tr(a, unit=unit) for a in angles],
                       check=False)
コード例 #10
0
    def EulerVec(cls, w):
        r"""
        Construct a new SO(3) rotation matrix from an Euler rotation vector

        :param ω: rotation axis
        :type ω: 3-element array_like
        :return: SO(3) rotation
        :rtype: SO3 instance

        ``SO3.EulerVec(ω)`` is a unit quaternion that describes the 3D rotation
        defined by a rotation of :math:`\theta = \lVert \omega \rVert` about the
        unit 3-vector :math:`\omega / \lVert \omega \rVert`.

        Example:

        .. runblock:: pycon
        
            >>> from spatialmath import SO3
            >>> SO3.EulerVec([0.5,0,0])

        .. note:: :math:`\theta \eq 0` the result in an identity matrix, otherwise
            ``V`` must have a finite length, ie. :math:`|V| > 0`.

        :seealso: :func:`~spatialmath.pose3d.SE3.angvec`, :func:`~spatialmath.base.transforms3d.angvec2r`
        """
        assert base.isvector(w, 3), 'w must be a 3-vector'
        w = base.getvector(w)
        theta = base.norm(w)
        return cls(base.angvec2r(theta, w), check=False)
コード例 #11
0
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: ndarray
        :return: Whether the value is a 6-vector or a valid 4x4 se(3) element
        :rtype: bool

        A twist can be represented by a 6-vector or a 4x4 skew symmetric matrix,
        for example:

        .. runblock:: pycon

            >>> from spatialmath import Twist3, base
            >>> import numpy as np
            >>> Twist3.isvalid([1, 2, 3, 4, 5, 6])
            >>> a = base.skewa([1, 2, 3, 4, 5, 6])
            >>> a
            >>> Twist3.isvalid(a)
            >>> Twist3.isvalid(np.random.rand(4,4))
        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not base.iszerovec(v.diagonal()):  # check diagonal is zero
                return False
            if not base.iszerovec(v[3, :]):  # check bottom row is zero
                return False
            if check and not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
コード例 #12
0
def h2e(v):
    """
    Convert from homogeneous to Euclidean form

    :param v: homogeneous vector or matrix
    :type v: array_like(n), ndarray(n,m)
    :return: Euclidean vector
    :rtype: ndarray(n-1), ndarray(n-1,m)

    - If ``v`` is an N-vector, return an (N-1)-column vector where the elements have
      all been scaled by the last element of ``v``.
    - If ``v`` is a matrix (NxM), return a matrix (N-1xM), where each column has
      been scaled by its last element.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> h2e([2, 4, 6, 1])
        >>> h2e([2, 4, 6, 2])
        >>> h = np.c_[[1,2,1], [3,4,2], [5,6,1]]
        >>> h
        >>> h2e(h)

    .. note:: The result is always a 2D array, a 1D input results in a column vector.

    :seealso: e2h
    """
    if isinstance(v, np.ndarray) and len(v.shape) == 2:
        # dealing with matrix
        return v[:-1, :] / np.tile(v[-1, :], (v.shape[0] - 1, 1))

    elif base.isvector(v):
        # dealing with shape (N,) array
        v = base.getvector(v, out='col')
        return v[0:-1] / v[-1]
コード例 #13
0
    def __init__(self, v=None, w=None):
        """
        Create a Plucker 3D line object
        
        :param v: Plucker vector, Plucker object, Plucker moment
        :type v: 6-element array_like, Plucker instance, 3-element array_like
        :param w: Plucker direction, optional
        :type w: 3-element array_like, optional
        :raises ValueError: bad arguments
        :return: Plucker line
        :rtype: Plucker

        - ``L = Plucker(X)`` creates a Plucker object from the Plucker coordinate vector
          ``X`` = [V,W] where V (3-vector) is the moment and W (3-vector) is the line direction.

        - ``L = Plucker(L)`` creates a copy of the Plucker object ``L``.
        
        - ``L = Plucker(V, W)`` creates a Plucker object from moment ``V`` (3-vector) and
          line direction ``W`` (3-vector).
          
        Notes:
            
        - The Plucker object inherits from ``collections.UserList`` and has list-like
          behaviours.
        - A single Plucker object contains a 1D array of Plucker coordinates.
        - The elements of the array are guaranteed to be Plucker coordinates.
        - The number of elements is given by ``len(L)``
        - The elements can be accessed using index and slice notation, eg. ``L[1]`` or
          ``L[2:3]``
        - The Plucker instance can be used as an iterator in a for loop or list comprehension.
        - Some methods support operations on the internal list.
          
        :seealso: Plucker.PQ, Plucker.Planes, Plucker.PointDir
        """
        super().__init__()  # enable list powers

        if w is None:
            # zero or one arguments passed
            if super().arghandler(v, convertfrom=(SE3, )):
                return

        else:
            # additional arguments
            assert base.isvector(v, 3) and base.isvector(
                w, 3), 'expecting two 3-vectors'
            self.data = [np.r_[v, w]]
コード例 #14
0
    def __init__(self, x=None, y=None, z=None, *, check=True):
        """
        Construct new SE(3) object

        :rtype: SE3 instance

        There are multiple call signatures that return an ``SE3`` instance
        with one or more values.

        - ``SE3()`` null motion, value is the identity matrix.
        - ``SE3(x, y, z)`` is a pure translation of (x,y,z)
        - ``SE3(T)``  where ``T`` is a 4x4 Numpy  array representing an SE(3)
          matrix.  If ``check`` is ``True`` check the matrix belongs to SE(3).
        - ``SE3([T1, T2, ... TN])`` has ``N`` values
          given by the elements ``Ti`` each of which is a 4x4 NumPy array
          representing an SE(3) matrix. If ``check`` is ``True`` check the
          matrix belongs to SE(3).
        - ``SE3(X)`` where ``X`` is:
          -  ``SE3`` is a copy of ``X``
          -  ``SO3`` is the rotation of ``X`` with zero translation
          -  ``SE2`` is the z-axis rotation and x- and y-axis translation of
             ``X``
        - ``SE3([X1, X2, ... XN])`` has ``N`` values
          given by the elements ``Xi`` each of which is an SE3 instance.
        
        :SymPy: supported
        """
        if y is None and z is None:
            # just one argument passed

            if super().arghandler(x, check=check):
                return
            elif isinstance(x, SO3):
                self.data = [base.r2t(_x) for _x in x.data]
            elif type(x).__name__ == 'SE2':

                def convert(x):
                    # convert SE(2) to SE(3)
                    out = np.identity(4, dtype=x.dtype)
                    out[:2, :2] = x[:2, :2]
                    out[:2, 3] = x[:2, 2]
                    return out

                self.data = [convert(_x) for _x in x.data]
            elif base.isvector(x, 3):
                # SE3( [x, y, z] )
                self.data = [base.transl(x)]
            elif isinstance(x, np.ndarray) and x.shape[1] == 3:
                # SE3( Nx3 )
                self.data = [base.transl(T) for T in x]

            else:
                raise ValueError('bad argument to constructor')

        elif y is not None and z is not None:
            # SE3(x, y, z)
            self.data = [base.transl(x, y, z)]
コード例 #15
0
    def RPY(cls, *angles, unit='rad', order='zyx'):
        r"""
        Create an SE(3) pure rotation from roll-pitch-yaw angles

        :param 𝚪: roll-pitch-yaw angles
        :type 𝚪: array_like or numpy.ndarray with shape=(N,3)
        :param unit: angular units: 'rad' [default], or 'deg'
        :type unit: str
        :param order: rotation order: 'zyx' [default], 'xyz', or 'yxz'
        :type order: str
        :return: SE(3) matrix
        :rtype: SE3 instance

        - ``SE3.RPY(𝚪)`` is an SE(3) rotation defined by a 3-vector of roll,
          pitch, yaw angles :math:`\Gamma=(r, p, y)` which correspond to
          successive rotations about the axes specified by ``order``:

            - ``'zyx'`` [default], rotate by yaw about the z-axis, then by pitch about the new y-axis,
              then by roll about the new x-axis.  This is the **convention** for a mobile robot with x-axis forward
              and y-axis sideways.
            - ``'xyz'``, rotate by yaw about the x-axis, then by pitch about the new y-axis,
              then by roll about the new z-axis. This is the **convention** for a robot gripper with z-axis forward
              and y-axis between the gripper fingers.
            - ``'yxz'``, rotate by yaw about the y-axis, then by pitch about the new x-axis,
              then by roll about the new z-axis. This is the **convention** for a camera with z-axis parallel
              to the optical axis and x-axis parallel to the pixel rows.

        If ``𝚪`` is an Nx3 matrix then the result is a sequence of rotations each defined by RPY angles
        corresponding to the rows of ``𝚪``.

        - ``SE3.RPY(⍺, β, 𝛾)`` as above but the angles are provided as three
          scalars.

        Example:

        .. runblock:: pycon
        
            >>> from spatialmath import SE3
            >>> SE3.RPY(0.1, 0.2, 0.3)
            >>> SE3.RPY([0.1, 0.2, 0.3])
            >>> SE3.RPY(0.1, 0.2, 0.3, order='xyz')
            >>> SE3.RPY(10, 20, 30, unit='deg')

        :seealso: :func:`~spatialmath.pose3d.SE3.rpy`, :func:`~spatialmath.base.transforms3d.rpy2r`
        :SymPy: supported
        """
        if len(angles) == 1:
            angles = angles[0]

        if base.isvector(angles, 3):
            return cls(base.rpy2tr(angles, order=order, unit=unit),
                       check=False)
        else:
            return cls(
                [base.rpy2tr(a, order=order, unit=unit) for a in angles],
                check=False)
コード例 #16
0
    def RPY(cls, *angles, unit='rad', order='zyx', ):
        r"""
        Construct a new SO(3) from roll-pitch-yaw angles

        :param angles: roll-pitch-yaw angles
        :type angles: array_like(3), array_like(n,3)
        :param unit: angular units: 'rad' [default], or 'deg'
        :type unit: str
        :param order: rotation order: 'zyx' [default], 'xyz', or 'yxz'
        :type order: str
        :return: SO(3) rotation
        :rtype: SO3 instance

        - ``SO3.RPY(angles)`` is an SO(3) rotation defined by a 3-vector of
          roll, pitch, yaw angles :math:`(\alpha, \beta, \gamma)`. If ``angles``
          is an Nx3 matrix then the result is a sequence of rotations each
          defined by RPY angles corresponding to the rows of angles. The angles
          correspond to successive rotations about the axes specified by
          ``order``:

             - ``'zyx'`` [default], rotate by yaw about the z-axis, then by pitch about the new y-axis,
               then by roll about the new x-axis.  Convention for a mobile robot with x-axis forward
               and y-axis sideways.
            - ``'xyz'``, rotate by yaw about the x-axis, then by pitch about the new y-axis,
              then by roll about the new z-axis. Convention for a robot gripper with z-axis forward
              and y-axis between the gripper fingers.
            - ``'yxz'``, rotate by yaw about the y-axis, then by pitch about the new x-axis,
              then by roll about the new z-axis. Convention for a camera with z-axis parallel
              to the optic axis and x-axis parallel to the pixel rows.

        - ``SO3.RPY(⍺, β, 𝛾)`` as above but the angles are provided as three
          scalars.

        Example:

        .. runblock:: pycon
        
            >>> from spatialmath import SO3
            >>> SO3.RPY(0.1, 0.2, 0.3)
            >>> SO3.RPY([0.1, 0.2, 0.3])
            >>> SO3.RPY(0.1, 0.2, 0.3, order='xyz')
            >>> SO3.RPY(10, 20, 30, 'deg')


        :seealso: :func:`~spatialmath.pose3d.SE3.rpy`, :func:`~spatialmath.pose3d.SE3.RPY`, :func:`spatialmath.base.transforms3d.rpy2r`
        """
        if len(angles) == 1:
            angles = angles[0]

        # angles = base.getmatrix(angles, (None, 3))
        # return cls(base.rpy2r(angles, order=order, unit=unit), check=False)

        if base.isvector(angles, 3):
            return cls(base.rpy2r(angles, unit=unit, order=order), check=False)
        else:
            return cls([base.rpy2r(a, unit=unit, order=order) for a in angles], check=False)
コード例 #17
0
def tristim2cc(tri):
    """
    Tristimulus to chromaticity coordinates

    :param tri: xyz as an array, (N,3) or (N,M,3)
    :type tri: float or array_like
    :return cc: chromaticity coordinates
    :rtype: numpy array, shape = (N,2) or (N,M,2)

    ``tristim2cc(tri)`` is the chromaticity coordinate (1x2) corresponding
    to the tristimulus ``tri`` (1,3). Multiple tristimulus values can be
    given as rows of ``tri`` (N,3), in which case the chromaticity
    coordinates are the corresponding rows (N,2).

    ``tristim2cc(im)`` is the chromaticity coordinates corresponding to every
    pixel in the tristimulus image ``im`` (H,W,3). The return is (H,W,2) that
    has planes corresponding to r and g, or x and y (depending on whether the
    input image was rgb or xyz).

    Example:

    .. runblock:: pycon

    :references:

        - Robotics, Vision & Control, Chapter 10, P. Corke, Springer 2011.
    """

    # TODO check if tri is correct shape? can be vector or matrix
    tri = np.array(tri)

    if tri.ndim == 2 and tri.shape[-1] == 3:
        # N x 3 case
        # each row is R G B, or X Y Z
        s = np.sum(tri, axis=1)
        s = base.getvector(s)
        ss = np.stack((s, s), axis=-1)
        cc = tri[0:, 0:2] / ss

    elif tri.ndim == 3 and tri.shape[-1] == 3:
        # N x M x 3 case

        # tri is given as an image
        s = np.sum(tri, axis=2)
        ss = np.stack((s, s), axis=-1)  # could also use np.tile
        cc = tri[0:, 0:, :2] / ss

    elif base.isvector(tri, 3):
        tri = base.getvector(tri)
        cc = tri[:2] / tri[2]

    else:
        raise ValueError('bad shape input')

    return cc
コード例 #18
0
    def __init__(self, arg=None, w=None, check=True):
        """
        Construct a new Twist object

        TW = Twist(T) is a Twist object representing the SE(2) or SE(3)
        homogeneous transformation matrix T (3x3 or 4x4).

        TW = Twist(V) is a twist object where the vector is specified directly.

        3D CASE:

        TW = Twist('R', A, Q) is a Twist object representing rotation about the
        axis of direction A (3x1) and passing through the point Q (3x1).
                %
        TW = Twist('R', A, Q, P) as above but with a pitch of P (distance/angle).

        TW = Twist('T', A) is a Twist object representing translation in the
        direction of A (3x1).

        Notes:

        - The argument 'P' for prismatic is synonymous with 'T'.
        """

        # super().__init__()   # enable UserList superpowers

        if w is None:
            # zero or one arguments passed
            if super().arghandler(arg, convertfrom=(SE3, ), check=check):
                return

            elif base.isvector(arg, 6):
                # Twist(array_like)
                self.data = [base.getvector(arg)]
                return

        elif w is not None and base.isvector(w, 3) and base.isvector(arg, 3):
            # Twist(v, w)
            self.data = [np.r_[arg, w]]
            return

        raise ValueError('bad twist value')
コード例 #19
0
def homtrans(T, p):
    r"""
    Apply a homogeneous transformation to a Euclidean vector

    :param T: homogeneous transformation
    :type T: Numpy array (3,3) or (4,4)
    :param p: Vector(s) to be transformed
    :type p: Numpy array (2,), (2,N), (3,) or (3,N)
    :return: transformed Euclidean vector(s)
    :rtype: Numpy array (2,), (2,N), (3,) or (3,N)
    :raises ValueError: bad argument

    ``homtrans(T, p)`` applies the homogeneous transformation ``T`` to the points 
    stored columnwise in ``p``.

    - If ``T`` is in SE(2) (3x3) and
        - ``p`` is 2xN (2D points) they are considered Euclidean (:math:`\mathbb{R}^2`)
        - ``p`` is 3xN (2D points) they are considered projective (:math:`\mathbb{P}^2`)
    - If ``T`` is in SE(3) (4x4) and
        - ``p`` is 3xN (3D points) they are considered Euclidean (:math:`\mathbb{R}^3`)
        - ``p`` is 4xN (3D points) they are considered projective (:math:`\mathbb{P}^3`)

    The return value and ``p`` have the same number of rows, ie. if Euclidean points are given
    then Euclidean points are returned, if projective points are given then
    projective points are returned.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> T = trotx(0.3)
        >>> v = [1, 2, 3]
        >>> h2e( T @ e2h(v))
        >>> homtrans(T, v)

    .. note::

        - If T is a homogeneous transformation defining the pose of {B} with respect to {A},
          then the points are defined with respect to frame {B} and are transformed to be
          with respect to frame {A}.

    :seealso: :func:`e2h`, :func:`h2e`
    """
    if base.isvector(p):
        p = base.getvector(p)
    if p.shape[0] == T.shape[0] - 1:
        # Euclidean vector
        return h2e(T @ e2h(p))
    elif p.shape[0] == T.shape[0]:
        # homogeneous vector
        return T @ p
    else:
        raise ValueError('matrices and point data do not conform')
コード例 #20
0
 def isvalid(v, check=True):
     if base.isvector(v, 3):
         return True
     elif base.ismatrix(v, (3, 3)):
         # maybe be an se(2)
         if not all(v.diagonal() == 0):  # check diagonal is zero
             return False
         if not all(v[2, :] == 0):  # check bottom row is zero
             return False
         if not base.isskew(v[:2, :2]):
             # top left 2x2is skew symmetric
             return False
         return True
     return False
コード例 #21
0
    def eval_control(self, control, x):
        """
        Evaluate vehicle control input (superclass method)

        :param control: vehicle control
        :type control: [type]
        :param x: vehicle state :math:`(x, y, \theta)`
        :type x: array_like(3)
        :raises ValueError: bad control
        :return: vehicle control inputs
        :rtype: ndarray(2)

        Evaluates the control for this time step and state. Control can be:

            * a constant 2-tuple as the control inputs to the vehicle
            * a function called as ``f(vehicle, t, x)`` that returns a tuple
            * an interpolator called as f(t) that returns a tuple, see
              SciPy interp1d
            * a ``VehicleDriver`` subclass object

        .. note:: Vehicle steering, speed and acceleration limits are applied.
        """
        # was called control() in the MATLAB version

        if base.isvector(control, 2):
            # control is a constant
            u = base.getvector(control, 2)

        elif isinstance(control, VehicleDriver):
            # vehicle has a driver object
            u = control.demand()

        elif isinstance(control, interpolate.interpolate.interp1d):
            # control is an interp1d object
            u = control(self._t)

        elif callable(control):
            # control is a user function of time and state
            u = control(self, self._t, x)

        else:
            raise ValueError('bad control specified')

        # apply limits
        ulim = self.u_limited(u)
        return ulim
コード例 #22
0
    def __init__(self, x=None, y=None, z=None, *, check=True):
        """
        Construct new SE(3) object

        :rtype: SE3 instance

        There are multiple call signatures:

        - ``SE3()`` is an ``SE3`` instance with one value  -- a 4x4 identity
          matrix which corresponds to a null motion.
        - ``SE3(x, y, z)`` is a pure translation of (x,y,z)
        - ``SE3(T)`` is an ``SE3`` instance with the value ``T`` which is a 4x4
          numpy array representing an SE(3) matrix.  If ``check`` is ``True``
          check the matrix belongs to SE(3).
        - ``SE3(X)`` is an ``SE3`` instance with the same value as ``X``, ie.
          a copy.
        - ``SE3([T1, T2, ... TN])`` is an ``SE3`` instance with ``N`` values
          given by the elements ``Ti`` each of which is a 4x4 NumPy array
          representing an SE(3) matrix. If ``check`` is ``True`` check the
          matrix belongs to SE(3).
        - ``SE3([X1, X2, ... XN])`` is an ``SE3`` instance with ``N`` values
          given by the elements ``Xi`` each of which is an SE3 instance.
        
        :SymPy: supported
        """
        if y is None and z is None:
            # just one argument passed

            if super().arghandler(x, check=check):
                return
            elif base.isvector(x, 3):
                # SE3( [x, y, z] )
                self.data = [base.transl(x)]
            elif isinstance(x, np.ndarray) and x.shape[1] == 3:
                # SE3( Nx3 )
                self.data = [base.transl(T) for T in x]

            else:
                raise ValueError('bad argument to constructor')

        elif y is not None and z is not None:
            # SE3(x, y, z)
            self.data = [base.transl(x, y, z)]
コード例 #23
0
    def Exp(cls, S, check=True):
        """
        Create an SE(3) matrix from se(3)

        :param S: Lie algebra se(3) matrix
        :type S: numpy ndarray
        :return: SE(3) matrix
        :rtype: SE3 instance

        - ``SE3.Exp(S)`` is an SE(3) rotation defined by its Lie algebra
          which is a 4x4 se(3) matrix (skew symmetric)
        - ``SE3.Exp(t)`` is an SE(3) rotation defined by a 6-element twist
          vector (the unique elements of the se(3) skew-symmetric matrix)

        :seealso: :func:`~spatialmath.base.transforms3d.trexp`, :func:`~spatialmath.base.transformsNd.skew`
        """
        if base.isvector(S, 6):
            return cls(base.trexp(base.getvector(S)), check=False)
        else:
            return cls([base.trexp(s) for s in S], check=False)
コード例 #24
0
    def Eul(cls, *angles, unit='rad'):
        r"""
        Create an SE(3) pure rotation from Euler angles

        :param 𝚪: Euler angles
        :type 𝚪: array_like or numpy.ndarray with shape=(N,3)
        :param unit: angular units: 'rad' [default], or 'deg'
        :type unit: str
        :return: SE(3) matrix
        :rtype: SE3 instance

        - ``SE3.Eul(𝚪)`` is an SE(3) rotation defined by a 3-vector of Euler
          angles :math:`\Gamma=(\phi, \theta, \psi)` which correspond to
          consecutive rotations about the Z, Y, Z axes respectively.

        If ``𝚪`` is an Nx3 matrix then the result is a sequence of
        rotations each defined by Euler angles corresponding to the rows of
        ``𝚪``.

        - ``SE3.Eul(φ, θ, ψ)`` as above but the angles are provided as three
          scalars.

        Example:

        .. runblock:: pycon
        
            >>> from spatialmath import SE3
            >>> SE3.Eul(0.1, 0.2, 0.3)
            >>> SE3.Eul([0.1, 0.2, 0.3])
            >>> SE3.Eul(10, 20, 30, unit='deg')

        :seealso: :func:`~spatialmath.pose3d.SE3.eul`, :func:`~spatialmath.base.transforms3d.eul2r`
        :SymPy: supported
        """
        if len(angles) == 1:
            angles = angles[0]
        if base.isvector(angles, 3):
            return cls(base.eul2tr(angles, unit=unit), check=False)
        else:
            return cls([base.eul2tr(a, unit=unit) for a in angles],
                       check=False)
コード例 #25
0
    def __init__(self, real=None, dual=None):
        """
        Construct a new dual quaternion

        :param real: real quaternion
        :type real: Quaternion or UnitQuaternion
        :param dual: dual quaternion
        :type dual: Quaternion or UnitQuaternion
        :raises ValueError: incorrect parameters

        Example:

        .. runblock:: pycon

            >>> from spatialmath import DualQuaternion, Quaternion
            >>> d = DualQuaternion(Quaternion([1,2,3,4]), Quaternion([5,6,7,8]))
            >>> print(d)
            >>> d = DualQuaternion([1, 2, 3, 4,  5, 6, 7, 8])
            >>> print(d)

        The dual number is stored internally as two quaternion, respectively
        called ``real`` and ``dual``.

        """

        if real is None and dual is None:
            self.real = None
            self.dual = None
            return
        elif dual is None and base.isvector(real, 8):
            self.real = Quaternion(real[0:4])
            self.dual = Quaternion(real[4:8])
        elif real is not None and dual is not None:
            if not isinstance(real, Quaternion):
                raise ValueError('real part must be a Quaternion subclass')
            if not isinstance(dual, Quaternion):
                raise ValueError('real part must be a Quaternion subclass')
            self.real = real  # quaternion, real part
            self.dual = dual  # quaternion, dual part
        else:
            raise ValueError('expecting zero or two parameters')
コード例 #26
0
    def __init__(self, arg=None, w=None, check=True):
        r"""
        Construct a new 2D Twist object

        :type a: 2-element array-like
        :return: 2D prismatic twist
        :rtype: Twist2 instance

        - ``Twist2(R)`` is a 2D Twist object representing the SO(2) rotation expressed as 
          a 2x2 matrix.
        - ``Twist2(T)`` is a 2D Twist object representing the SE(2) rigid-body motion expressed as 
          a 3x3 matrix.
        - ``Twist2(X)`` if X is an SO2 instance then create a 2D Twist object representing the SO(2) rotation,
          and if X is an SE2 instance then create a 2D Twist object representing the SE(2) motion
        - ``Twist2(V)`` is a  2D Twist object specified directly by a 3-element array-like comprising the
          moment vector (1 element) and direction vector (2 elements).

    :References:
        - **Robotics, Vision & Control**, Corke, Springer 2017.
        - **Modern Robotics, Lynch & Park**, Cambridge 2017

    .. note:: Compared to Lynch & Park this module implements twist vectors
        with the translational components first, followed by rotational
        components, ie. :math:`[\omega, \vec{v}]`.
        """

        super().__init__()

        if w is None:
            # zero or one arguments passed
            if super().arghandler(arg, convertfrom=(SE2, ), check=check):
                return

        elif w is not None and base.isscalar(w) and base.isvector(arg, 2):
            # Twist(v, w)
            self.data = [np.r_[arg, w]]
            return

        raise ValueError('bad twist value')
コード例 #27
0
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: numpy.ndarray
        :return: true of the matrix is a 6-vector or a 4x4 se(3) element
        :rtype: bool

        A twist can be reprented by a 6-vector or a 4x4 skew symmetric matrix,
        for example::

            Twist3.isvalid([1, 2, 3, 4, 5, 6])
            >>> a = base.skewa([1, 2, 3, 4, 5, 6])
            >>> a
            array([[ 0., -6.,  5.,  1.],
                [ 6.,  0., -4.,  2.],
                [-5.,  4.,  0.,  3.],
                [ 0.,  0.,  0.,  0.]])
            >>> Twist3.isvalid(a)
            True
            >>> b=np.random.rand(4,4)
            >>> Twist3.isvalid(b)
            False
        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not all(v.diagonal() == 0):  # check diagonal is zero
                return False
            if not all(v[3, :] == 0):  # check bottom row is zero
                return False
            if not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
コード例 #28
0
    def isvalid(v, check=True):
        """
        Test if matrix is valid twist

        :param x: array to test
        :type x: numpy.ndarray
        :return: true of the matrix is a 6-vector or a 4x4 se(3) element
        :rtype: bool

        """
        if base.isvector(v, 6):
            return True
        elif base.ismatrix(v, (4, 4)):
            # maybe be an se(3)
            if not all(v.diagonal() == 0):  # check diagonal is zero
                return False
            if not all(v[3, :] == 0):  # check bottom row is zero
                return False
            if not base.isskew(v[:3, :3]):
                # top left 3x3 is skew symmetric
                return False
            return True
        return False
コード例 #29
0
    def RPY(cls, angles, *, order='zyx', unit='rad'):
        r"""
        Construct a new SO(3) from roll-pitch-yaw angles

        :param angles: roll-pitch-yaw angles
        :type angles: array_like or numpy.ndarray with shape=(N,3)
        :param unit: angular units: 'rad' [default], or 'deg'
        :type unit: str
        :param order: rotation order: 'zyx' [default], 'xyz', or 'yxz'
        :type order: str
        :return: SO(3) rotation
        :rtype: SO3 instance

        ``SO3.RPY(angles)`` is an SO(3) rotation defined by a 3-vector of roll, pitch, yaw angles :math:`(r, p, y)`
          which correspond to successive rotations about the axes specified by ``order``:

             - ``'zyx'`` [default], rotate by yaw about the z-axis, then by pitch about the new y-axis,
               then by roll about the new x-axis.  Convention for a mobile robot with x-axis forward
               and y-axis sideways.
            - ``'xyz'``, rotate by yaw about the x-axis, then by pitch about the new y-axis,
              then by roll about the new z-axis. Convention for a robot gripper with z-axis forward
              and y-axis between the gripper fingers.
            - ``'yxz'``, rotate by yaw about the y-axis, then by pitch about the new x-axis,
              then by roll about the new z-axis. Convention for a camera with z-axis parallel
              to the optic axis and x-axis parallel to the pixel rows.

        If ``angles`` is an Nx3 matrix then the result is a sequence of rotations each defined by RPY angles
        corresponding to the rows of angles.

        :seealso: :func:`~spatialmath.pose3d.SE3.rpy`, :func:`~spatialmath.pose3d.SE3.RPY`, :func:`spatialmath.base.transforms3d.rpy2r`
        """
        if base.isvector(angles, 3):
            return cls(base.rpy2r(angles, order=order, unit=unit), check=False)
        else:
            return cls([base.rpy2r(a, order=order, unit=unit) for a in angles],
                       check=False)
コード例 #30
0
def trexp2(S, theta=None, check=True):
    """
    Exponential of so(2) or se(2) matrix

    :param S: se(2), so(2) matrix or equivalent velctor
    :type T: ndarray(3,3) or ndarray(2,2)
    :param theta: motion
    :type theta: float
    :return: matrix exponential in SE(2) or SO(2)
    :rtype: ndarray(3,3) or ndarray(2,2)
    :raises ValueError: bad argument

    An efficient closed-form solution of the matrix exponential for arguments
    that are se(2) or so(2).

    For se(2) the results is an SE(2) homogeneous transformation matrix:

    - ``trexp2(Σ)`` is the matrix exponential of the se(2) element ``Σ`` which is
      a 3x3 augmented skew-symmetric matrix.
    - ``trexp2(Σ, θ)`` as above but for an se(3) motion of Σθ, where ``Σ``
      must represent a unit-twist, ie. the rotational component is a unit-norm skew-symmetric
      matrix.
    - ``trexp2(S)`` is the matrix exponential of the se(3) element ``S`` represented as
      a 3-vector which can be considered a screw motion.
    - ``trexp2(S, θ)`` as above but for an se(2) motion of Sθ, where ``S``
      must represent a unit-twist, ie. the rotational component is a unit-norm skew-symmetric
      matrix.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> trexp2(skew(1))
        >>> trexp2(skew(1), 2)  # revolute unit twist
        >>> trexp2(1)
        >>> trexp2(1, 2)  # revolute unit twist

    For so(2) the results is an SO(2) rotation matrix:

    - ``trexp2(Ω)`` is the matrix exponential of the so(3) element ``Ω`` which is a 2x2
      skew-symmetric matrix.
    - ``trexp2(Ω, θ)`` as above but for an so(3) motion of Ωθ, where ``Ω`` is
      unit-norm skew-symmetric matrix representing a rotation axis and a rotation magnitude
      given by ``θ``.
    - ``trexp2(ω)`` is the matrix exponential of the so(2) element ``ω`` expressed as
      a 1-vector.
    - ``trexp2(ω, θ)`` as above but for an so(3) motion of ωθ where ``ω`` is a
      unit-norm vector representing a rotation axis and a rotation magnitude
      given by ``θ``. ``ω`` is expressed as a 1-vector.

    .. runblock:: pycon

        >>> from spatialmath.base import *
        >>> trexp2(skewa([1, 2, 3]))
        >>> trexp2(skewa([1, 0, 0]), 2)  # prismatic unit twist
        >>> trexp2([1, 2, 3])
        >>> trexp2([1, 0, 0], 2)

    :seealso: trlog, trexp2
    """

    if base.ismatrix(S, (3, 3)) or base.isvector(S, 3):
        # se(2) case
        if base.ismatrix(S, (3, 3)):
            # augmentented skew matrix
            if check and not base.isskewa(S):
                raise ValueError("argument must be a valid se(2) element")
            tw = base.vexa(S)
        else:
            # 3 vector
            tw = base.getvector(S)

        if base.iszerovec(tw):
            return np.eye(3)

        if theta is None:
            (tw, theta) = base.unittwist2_norm(tw)
        elif not base.isunittwist2(tw):
            raise ValueError("If theta is specified S must be a unit twist")

        t = tw[0:2]
        w = tw[2]

        R = base.rodrigues(w, theta)

        skw = base.skew(w)
        V = np.eye(2) * theta + (1.0 - math.cos(theta)) * skw + (
            theta - math.sin(theta)) * skw @ skw

        return base.rt2tr(R, V @ t)

    elif base.ismatrix(S, (2, 2)) or base.isvector(S, 1):
        # so(2) case
        if base.ismatrix(S, (2, 2)):
            # skew symmetric matrix
            if check and not base.isskew(S):
                raise ValueError("argument must be a valid so(2) element")
            w = base.vex(S)
        else:
            # 1 vector
            w = base.getvector(S)

        if theta is not None and not base.isunitvec(w):
            raise ValueError("If theta is specified S must be a unit twist")

        # do Rodrigues' formula for rotation
        return base.rodrigues(w, theta)
    else:
        raise ValueError(
            " First argument must be SO(2), 1-vector, SE(2) or 3-vector")