Dx = 20 Dy = 20 xmin = 0 + rmax xmax = Dx - rmax ymin = 0 + rmax ymax = Dx - rmax print(P_ThomasPP) #%% print(P_ThomasPP_center) #%% P_ThomasPP_center = sswdistsim.xyroi_idx(P_ThomasPP, xmin, xmax, ymin, ymax) #%% # P_ThomasPP_center = sswdistsim.xyroi(P_ThomasPP, 0, 20, 0, 20) P_ThomasPP_density = sswdistsim.xydensity(P_ThomasPP, Dx = Dx) [0] print(P_ThomasPP_density) #%% start = time.time() K_r, L_r, H_r, RList, densitylist = spatialpattern.spest(input_array_ref = P_ThomasPP_center, input_array_all = P_ThomasPP, function = 'all', density = P_ThomasPP_density, rstart = 0, rend = 5, rstep = 0.01) end = time.time() print(end - start) print(RList) print(K_r) print(L_r)
Dx = 20 P_parent = sswdistsim.PoissonPP(rt=rate, Dx=Dx, seed=seed) # creating children points sigma = 0.3 mu = 50 P_children = sswdistsim.ThomasPP(rt=rate, Dx=Dx, sigma=sigma, mu=mu, seed=seed) # reduce data to region of interest xmin = 0 xmax = Dx ymin = 0 ymax = Dx # crop data and calculate density P_ThomasPP = sswdistsim.xyroi(P_children, xmin, xmax, ymin, ymax) P_ThomasPP_density = sswdistsim.xydensity(P_ThomasPP) # print(P_ThomasPP.shape[0]) # print(P_ThomasPP_density) # save to csv filename = 'P_ThomasPP_20' outputpath = os.path.join(path, outputfolder, outputsubfolder_csv, filename + '.csv') df = pd.DataFrame(P_ThomasPP, columns=['x', 'y']) df.to_csv(outputpath, index=False) # save metadata outputpath = os.path.join(path, outputfolder, outputsubfolder_csv, filename + '.txt') with open(outputpath, 'w') as file:
P_ThomasPP = pd.read_csv(inputpath) P_ThomasPP = np.array(P_ThomasPP) # %% # spest: Ripley's function # ---------------------------------- import spatialstatWUCCI.spatialpattern as sp imp.reload(sp) import spatialstatWUCCI.distribution_simulator as sswdistsim imp.reload(sswdistsim) # ThomasPP test -------------------------------------- P_ThomasPP_center = sswdistsim.xyroi(P_ThomasPP, 5, 15, 5, 15) # P_ThomasPP_center = sswdistsim.xyroi(P_ThomasPP, 0, 20, 0, 20) P_ThomasPP_density, count, area = sswdistsim.xydensity(P_ThomasPP, Dx=20) print('Density: {}'.format(P_ThomasPP_density)) print('Count: {}'.format(count)) print('Area: {}'.format(area)) # %% start = time.time() K_r, L_r, H_r, RList, densitylist = sp.spest(input_array_ref=P_ThomasPP_center, input_array_all=P_ThomasPP, function='all', density=P_ThomasPP_density, rstart=0, rend=5, rstep=0.01) end = time.time() print('processing time: {}'.format(end - start))
''' outputfolder = 'output' # %% # ripleyk_v2 # Ripley's K-function ---------------------------------- import spatialstatWUCCI.ripleyk_v2 as ripleyk_v2 imp.reload(ripleyk_v2) import spatialstatWUCCI.distribution_simulator as sswdistsim imp.reload(sswdistsim) # 1. ThomasPP test -------------------------------------- P_ThomasPP_center = sswdistsim.xyroi_idx(P_ThomasPP, 5, 15, 5, 15) # P_ThomasPP_center = sswdistsim.xyroi(P_ThomasPP, 0, 20, 0, 20) P_ThomasPP_density = sswdistsim.xydensity(P_ThomasPP, Dx=20) start = time.time() K_r, L_r, H_r, RList, densitylist = ripleyk_v2.ripleyk( xyarray_ref=P_ThomasPP_center, xyarray_all=P_ThomasPP, function='all', density=P_ThomasPP_density, rstart=0, rend=5, rstep=0.01) end = time.time() print('processing time: {}'.format(end - start)) filenames.append('P_ThomasPP_20') version_list.append('ripleyk_v2')