def transmit(): print 'TX: Initializing...' tx = spead.Transmitter(spead.TransportUDPtx('127.0.0.1', PORT, rate=1e9)) ig = spead.ItemGroup() ig.add_item(name='Var1', description='Description for Var1', shape=[], fmt=spead.mkfmt(('u', 32), ('u', 32), ('u', 32)), init_val=(1, 2, 3)) tx.send_heap(ig.get_heap()) ig['Var1'] = (4, 5, 6) tx.send_heap(ig.get_heap()) data = numpy.arange(100000 * 4000).astype(numpy.uint32) data.shape = (100000, 4000) ig.add_item(name='Var2', description='Description for Var2', shape=[100000, 4000], ndarray=data) ig['Var2'] = data tx.send_heap(ig.get_heap()) tx.end() print 'TX: Done.'
def transmit_std(): print 'TX: Initializing standard transport TX to IP', options.ip tx = spead.Transmitter(spead.TransportUDPtx(options.ip, 8888)) ig = spead.ItemGroup() ig.add_item( name='data_timestamp', description='Timestamp in epoch ms for the current visibility sample', shape=[1], fmt=spead.mkfmt(('u', 64))) ig.add_item( name='vis_data', description='The complex visibility spectrum for a single time dump', shape=[channels, baselines, 2], fmt=spead.mkfmt(('u', 32))) # using init_val with a numpy array will use the numpy transport automatically. for x in range(iterations): ig['data_timestamp'] = int(time.time() * 1000) ig['vis_data'] = np.random.normal(size=(channels, baselines, 2)).astype(np.float32) t_heap_send = time.time() tx.send_heap(ig.get_heap()) print "Sent data for timestamp", ig['data_timestamp'], "in", time.time( ) - t_heap_send, "s" time.sleep(15) tx.end() print 'TX: Done.'
def transmit(): print 'TX: initializing' tx = spead.Transmitter(spead.TransportUDPtx('127.0.0.1', PORT)) ig = spead.ItemGroup() print 'TX start' for i in range(100): ig.add_item(name='var%d' % i, description='Description for var%d' % i, init_val=0) ig.add_item(name='tx_time', description='Description', fmt='f\x00\x00\x40') ig.add_item(name='pv_time', description='Description', fmt='f\x00\x00\x40') ig.add_item(name='data', description='Description for data', shape=SHAPE, fmt='i\x00\x00\x20') data0 = numpy.zeros(SHAPE) data1 = numpy.ones(SHAPE) ig['pv_time'] = time.time() for i in range(20): ig['var%d' % i] = 1 if i % 2 == 0: ig['data'] = data0 else: ig['data'] = data1 ig['tx_time'] = time.time() tx.send_heap(ig.get_heap()) ig['pv_time'] = time.time() t_tx = ig['pv_time'] - ig['tx_time'] print 't_tx:', t_tx tx.end() print 'TX stop'
# Setup the transfer nchans = int(sys.argv[2]) ntime = int(sys.argv[3]) nsamples = int(sys.argv[4]) nfreq = int(sys.argv[5]) nbeams = int(sys.argv[6]) print('TX: Initializing...') ind = 0 # Send nbeams beams for i in range(nbeams): tx = spead.Transmitter(spead.TransportUDPtx('127.0.0.1', 8888, rate=1e3)) # Send N heaps for j in range(int(sys.argv[1])): ig = spead.ItemGroup() # Timestamp time = str(datetime.datetime.now().time()) ig.add_item(name='Timestamp', description='Current time', shape=[], fmt=spead.mkfmt(('c', 8)), init_val=('00:00'))
i = f.get_items() else: ValueError(cmd) elif cmd.startswith('BufferSocket'): if cmd == 'BufferSocket': while True: b = S._spead.BufferSocket(pkt_count=8192) elif cmd.split('.')[1] == 'callback': b = S._spead.BufferSocket(pkt_count=8192) def callback(pkt): pass b.set_callback(callback) b.start(53000) tx = S.TransportUDPtx('localhost', 53000) while True: tx.write(pkt) elif cmd.startswith('pack'): d = [[0]] * 1024 * 1024 while True: s = S._spead.pack('u\x00\x00\x20', d) elif cmd.startswith('unpack'): s = '\x00' * 1024 while True: d = S._spead.unpack('u\x00\x00\x20', s, cnt=-1) elif cmd.startswith('ItemGroup'): ig1, ig2 = S.ItemGroup(), S.ItemGroup() ig1.add_item('var1', fmt='f\x00\x00\x40', shape=-1) while True: ig1['var1'] = [[0]] * 1024
def rx_cont(self,data_port=7148, sd_ip='127.0.0.1', sd_port=7149,acc_scale=True, filename=None,**kwargs): logger=self.logger logger.info("Data reception on port %i."%data_port) rx = spead.TransportUDPrx(data_port, pkt_count=1024, buffer_size=51200000) logger.info("Sending Signal Display data to %s:%i."%(sd_ip,sd_port)) tx_sd = spead.Transmitter(spead.TransportUDPtx(sd_ip, sd_port)) ig = spead.ItemGroup() ig_sd = spead.ItemGroup() if filename == None: filename=str(int(time.time())) + ".synth.h5" logger.info("Starting file %s."%(filename)) f = h5py.File(filename, mode="w") data_ds = None ts_ds = None idx = 0 dump_size = 0 datasets = {} datasets_index = {} meta_required = ['n_chans','bandwidth','n_bls','n_xengs','center_freq','bls_ordering'] # we need these bits of meta data before being able to assemble and transmit signal display data meta_desired = ['n_accs'] meta = {} for heap in spead.iterheaps(rx): ig.update(heap) logger.debug("PROCESSING HEAP idx(%i) cnt(%i) @ %.4f" % (idx, heap.heap_cnt, time.time())) for name in ig.keys(): item = ig.get_item(name) if not item._changed and datasets.has_key(name): continue # the item is not marked as changed, and we have a record for it if name in meta_desired: meta[name] = ig[name] if name in meta_required: meta[name] = ig[name] meta_required.pop(meta_required.index(name)) if len(meta_required) == 0: #sd_frame = np.zeros((meta['n_chans'],meta['n_bls'],2),dtype=np.float32) logger.info("Got all required metadata. Expecting data frame shape of %i %i %i"%(meta['n_chans'],meta['n_bls'],2)) meta_required = ['n_chans','bandwidth','n_bls','n_xengs','center_freq','bls_ordering'] ig_sd = spead.ItemGroup() for meta_item in meta_required: ig_sd.add_item( name=ig.get_item(meta_item).name, id=ig.get_item(meta_item).id, description=ig.get_item(meta_item).description, #shape=ig.get_item(meta_item).shape, #fmt=ig.get_item(meta_item).format, init_val=ig.get_item(meta_item).get_value()) tx_sd.send_heap(ig_sd.get_heap()) if not datasets.has_key(name): # check to see if we have encountered this type before shape = ig[name].shape if item.shape == -1 else item.shape dtype = np.dtype(type(ig[name])) if shape == [] else item.dtype if dtype is None: dtype = ig[name].dtype # if we can't get a dtype from the descriptor try and get one from the value logger.info("Creating dataset for %s (%s,%s)."%(str(name),str(shape),str(dtype))) f.create_dataset(name,[1] + ([] if list(shape) == [1] else list(shape)), maxshape=[None] + ([] if list(shape) == [1] else list(shape)), dtype=dtype) dump_size += np.multiply.reduce(shape) * dtype.itemsize datasets[name] = f[name] datasets_index[name] = 0 if not item._changed: continue # if we built from and empty descriptor else: logger.info("Adding %s to dataset. New size is %i."%(name,datasets_index[name]+1)) f[name].resize(datasets_index[name]+1, axis=0) if name.startswith("xeng_raw"): sd_timestamp = ig['sync_time'] + (ig['timestamp'] / float(ig['scale_factor_timestamp'])) #logger.info("SD Timestamp: %f (%s)."%(sd_timestamp,time.ctime(sd_timestamp))) scale_factor=float(meta['n_accs'] if (meta.has_key('n_accs') and acc_scale) else 1) scaled_data = (ig[name]/scale_factor).astype(np.float32) # reinit the group to force meta data resend ig_sd = spead.ItemGroup() ig_sd.add_item(name=('sd_data'), id=(0x3501), description="Combined raw data from all x engines.", ndarray=(scaled_data.dtype,scaled_data.shape)) ig_sd.add_item(name=('sd_timestamp'), id=0x3502, description='Timestamp of this sd frame in centiseconds since epoch (40 bit limitation).', init_val=sd_timestamp) #shape=[], #fmt=spead.mkfmt(('u',spead.ADDRSIZE))) t_it = ig_sd.get_item('sd_data') logger.debug("Added SD frame with shape %s, dtype %s"%(str(t_it.shape),str(t_it.dtype))) tx_sd.send_heap(ig_sd.get_heap()) logger.info("Sending signal display frame with timestamp %i (%s). %s. Max: %i, Mean: %i"%( sd_timestamp, time.ctime(sd_timestamp), "Unscaled" if not acc_scale else "Scaled by %i" % (scale_factor), np.max(scaled_data), np.mean(scaled_data))) ig_sd['sd_data'] = scaled_data ig_sd['sd_timestamp'] = sd_timestamp * 100 #ig_sd['sd_timestamp'] = sd_timestamp tx_sd.send_heap(ig_sd.get_heap()) f[name][datasets_index[name]] = ig[name] datasets_index[name] += 1 item._changed = False # we have dealt with this item so continue... idx+=1 # for (name,idx) in datasets_index.iteritems(): # if idx == 1: # self.logger.info("Repacking dataset %s as an attribute as it is singular."%name) # f['/'].attrs[name] = f[name].value[0] # f.__delitem__(name) logger.info("Got a SPEAD end-of-stream marker. Closing File.") f.flush() f.close() rx.stop() ig_sd = None sd_timestamp = None logger.info("Files and sockets closed.")
def rx_inter(self,data_port=7148, sd_ip='127.0.0.1', sd_port=7149, acc_scale=True, filename=None, **kwargs): ''' Process SPEAD data from X engines and forward it to the SD. ''' print 'WARNING: This function is not yet tested. YMMV.' logger=self.logger logger.info("Data reception on port %i."%data_port) rx = spead.TransportUDPrx(data_port, pkt_count=1024, buffer_size=51200000) logger.info("Sending Signal Display data to %s:%i."%(sd_ip,sd_port)) tx_sd = spead.Transmitter(spead.TransportUDPtx(sd_ip, sd_port)) ig = spead.ItemGroup() ig_sd = spead.ItemGroup() if filename == None: filename=str(int(time.time())) + ".synth.h5" logger.info("Starting file %s."%(filename)) f = h5py.File(filename, mode="w") data_ds = None ts_ds = None idx = 0 dump_size = 0 datasets = {} datasets_index = {} # we need these bits of meta data before being able to assemble and transmit signal display data meta_required = ['n_chans','n_bls','n_xengs','center_freq','bls_ordering','bandwidth'] meta_desired = ['n_accs'] meta = {} sd_frame = None sd_slots = None timestamp = None # log the latest timestamp for which we've stored data currentTimestamp = -1 # iterate through SPEAD heaps returned by the SPEAD receiver. for heap in spead.iterheaps(rx): ig.update(heap) logger.debug("PROCESSING HEAP idx(%i) cnt(%i) @ %.4f" % (idx, heap.heap_cnt, time.time())) for name in ig.keys(): item = ig.get_item(name) # the item is not marked as changed and we already have a record for it, continue if not item._changed and datasets.has_key(name): continue logger.debug("PROCESSING KEY %s @ %.4f" % (name, time.time())) if name in meta_desired: meta[name] = ig[name] if name in meta_required: meta[name] = ig[name] meta_required.pop(meta_required.index(name)) if len(meta_required) == 0: sd_frame = np.zeros((meta['n_chans'],meta['n_bls'],2),dtype=np.float32) logger.info("Got all required metadata. Initialised sd frame to shape %s"%(str(sd_frame.shape))) meta_required = ['n_chans','bandwidth','n_bls','n_xengs','center_freq','bls_ordering'] ig_sd = spead.ItemGroup() for meta_item in meta_required: ig_sd.add_item( name=ig.get_item(meta_item).name, id=ig.get_item(meta_item).id, description=ig.get_item(meta_item).description, #shape=ig.get_item(meta_item).shape, #fmt=ig.get_item(meta_item).format, init_val=ig.get_item(meta_item).get_value()) tx_sd.send_heap(ig_sd.get_heap()) sd_slots = np.zeros(meta['n_xengs']) if not datasets.has_key(name): # check to see if we have encountered this type before shape = ig[name].shape if item.shape == -1 else item.shape dtype = np.dtype(type(ig[name])) if shape == [] else item.dtype if dtype is None: dtype = ig[name].dtype # if we can't get a dtype from the descriptor, try and get one from the value logger.info("Creating dataset for %s (%s,%s)."%(str(name),str(shape),str(dtype))) f.create_dataset(name,[1] + ([] if list(shape) == [1] else list(shape)), maxshape=[None] + ([] if list(shape) == [1] else list(shape)), dtype=dtype) dump_size += np.multiply.reduce(shape) * dtype.itemsize datasets[name] = f[name] datasets_index[name] = 0 # if we built from an empty descriptor if not item._changed: continue else: logger.info("Adding %s to dataset. New size is %i."%(name,datasets_index[name]+1)) f[name].resize(datasets_index[name]+1, axis=0) # now we store this x engine's data for sending sd data. if sd_frame is not None and name.startswith("xeng_raw"): xeng_id = int(name[8:]) sd_frame[xeng_id::meta['n_xengs']] = ig[name] logger.debug('Received data for Xeng %i @ %.4f' % (xeng_id, time.time())) # we got a timestamp. if sd_frame is not None and name.startswith("timestamp"): xeng_id = int(name[9:]) timestamp = ig['sync_time'] + (ig[name] / ig['scale_factor_timestamp']) #in seconds since unix epoch localTime = time.time() print "Decoded timestamp for Xeng", xeng_id, ":", timestamp, " (", time.ctime(timestamp),") @ %.4f" % localTime, " ", time.ctime(localTime), "diff(", localTime-timestamp, ")" # is this timestamp in the past? if currentTimestamp > timestamp: errorString = "Timestamp %.2f (%s) is earlier than the current timestamp %.2f (%s). Ignoring..." % (timestamp, time.ctime(timestamp), currentTimestamp, time.ctime(currentTimestamp)) logger.warning(errorString) continue # is this a new timestamp before a complete set? if (timestamp > currentTimestamp) and sd_slots.any(): errorString = "New timestamp %.2f from Xeng%i before previous set %.2f sent" % (timestamp, xeng_id, currentTimestamp) logger.warning(errorString) sd_slots = np.zeros(meta['n_xengs']) sd_frame = np.zeros((ig['n_chans'],ig['n_bls'],2),dtype=sd_frame.dtype) currentTimestamp = -1 continue # is this new timestamp in the past for this X engine? if timestamp <= sd_slots[xeng_id]: errorString = 'Xeng%i already on timestamp %.2f but got %.2f now, THIS SHOULD NOT HAPPEN' % (xeng_id, sd_slots[xeng_id], timestamp) logger.error(errorString) raise RuntimeError(errorString) # update our info on which integrations we have sd_slots[xeng_id] = timestamp currentTimestamp = timestamp # do we have integration data and timestamps for all the xengines? If so, send the SD frame. if timestamp is not None and sd_frame is not None and sd_slots is not None and sd_slots.all(): ig_sd = spead.ItemGroup() # make sure we have the right dtype for the sd data ig_sd.add_item(name=('sd_data'), id=(0x3501), description="Combined raw data from all x engines.", ndarray=(sd_frame.dtype,sd_frame.shape)) ig_sd.add_item(name=('sd_timestamp'), id=0x3502, description='Timestamp of this sd frame in centiseconds since epoch (40 bit limitation).', shape=[], fmt=spead.mkfmt(('u',spead.ADDRSIZE))) t_it = ig_sd.get_item('sd_data') logger.info("Added SD frame with shape %s, dtype %s" % (str(t_it.shape),str(t_it.dtype))) scale_factor=(meta['n_accs'] if meta.has_key('n_accs') else 1) logger.info("Sending signal display frame with timestamp %i (%s). %s. @ %.4f" % (timestamp, time.ctime(timestamp), "Unscaled" if not acc_scale else "Scaled by %i" % (scale_factor), time.time())) ig_sd['sd_data'] = sd_frame.astype(np.float32) if not acc_scale else (sd_frame / float(scale_factor)).astype(np.float32) ig_sd['sd_timestamp'] = int(timestamp * 100) tx_sd.send_heap(ig_sd.get_heap()) # reset the arrays that hold integration data sd_slots = np.zeros(meta['n_xengs']) sd_frame = np.zeros((ig['n_chans'],ig['n_bls'],2),dtype=sd_frame.dtype) timestamp = None f[name][datasets_index[name]] = ig[name] datasets_index[name] += 1 item._changed = False idx+=1 logger.info("Got a SPEAD end-of-stream marker. Closing File.") f.flush() f.close() rx.stop() sd_frame = None sd_slots = None ig_sd = None
def setUp(self): self.t_tx = S.TransportUDPtx(ip='127.0.0.1', port=50000)
def setUp(self): self.t_tx = S.TransportUDPtx(ip='127.0.0.1', port=50001) self.t_rx = RawUDPrx(port=50001)