''' from spearmint_salad.high_level import make_salad, format_trace_structure, format_final_risk, get_final_predictions, make_partition from spearmint_salad.high_level import NormalizeDs from spearmint_salad import hp from sklearn.svm import SVR hp_space = hp.Obj(SVR)( C = hp.Float( 0.01, 1e6, hp.log_scale ), gamma = hp.Float( 1e-6, 1e6, hp.log_scale ), epsilon = hp.Float(0.01,1, hp.log_scale), ) from sklearn.datasets.base import load_diabetes, load_boston dataset_partition = make_partition(load_diabetes, trn_ratio=0.6, val_ratio=0.2) from spearmint_salad import metric metric = metric.SquareDiffLoss() trace = make_salad( hp_space, metric, dataset_partition, max_iter = 10, salad_size=10) print format_trace_structure(trace) print print format_final_risk(trace) print prediction_dict = get_final_predictions(trace) print 'predictions available for %s.'%(', '.join(prediction_dict.keys()))
Created on Mar 31, 2014 @author: alex ''' from spearmint_salad.high_level import make_salad, format_trace_structure, format_final_risk, get_final_predictions, make_partition from spearmint_salad import hp from sklearn.svm import SVC hp_space = hp.Obj(SVC)( C = hp.Float( 0.01, 1000, hp.log_scale ), gamma = hp.Float( 1e-7, 1000, hp.log_scale ), ) from sklearn.datasets.base import load_digits dataset_partition = make_partition(load_digits, trn_ratio=0.6, val_ratio=0.2) from spearmint_salad import metric metric = metric.ZeroOneLoss() trace = make_salad( hp_space, metric, dataset_partition, max_iter = 10, mcmc_iters=0) print format_trace_structure(trace) print print format_final_risk(trace) print prediction_dict = get_final_predictions(trace) print 'predictions available for %s.'%(', '.join(prediction_dict.keys()))