コード例 #1
0
    def predict(self, configs, progress=None):

        configs = ConfigSpec(configs)
        opt_model = OptModel()
        opt_model.add_child_spec(configs, 'configs')
        zazu = ZaZu(opt_model, remote=True)
        zazu.run_inference()
コード例 #2
0
    def search(self, configs, progress=None):

        configs = ConfigSpec(configs)
        opt_model = OptModel()
        opt_model.add_child_spec(configs, 'configs')
        zazu = ZaZu(opt_model, remote=True)
        zazu.find_best_model()
        zazu.hp_search()
        checkpoint_paths_list = glob.glob('*checkpoint*.pt')
        save_info = {
            'package_name': self.package_name,
            'execution_id': progress.execution.id
        }

        project_name = opt_model.dataloop['project']
        project = dl.projects.get(project_name=project_name)

        # model_name = opt_model.name
        # model_obj = dl.models.get(model_name=model_name)
        logger.info('uploading checkpoints.....')
        for checkpoint_path in checkpoint_paths_list:
            # model_obj.checkpoints.upload(checkpoint_name=checkpoint_path.split('.')[0], local_path=checkpoint_path)
            project.artifacts.upload(filepath=checkpoint_path,
                                     package_name=save_info['package_name'],
                                     execution_id=save_info['execution_id'])

        logger.info('finished uploading checkpoints')
コード例 #3
0
    def train(self, configs, progress=None):

        configs = ConfigSpec(configs)
        opt_model = OptModel()
        opt_model.add_child_spec(configs, 'configs')
        zazu = ZaZu(opt_model, remote=True)
        zazu.train_new_model()
コード例 #4
0
    def search(self, configs, progress=None):

        configs = ConfigSpec(configs)
        opt_model = OptModel()
        opt_model.add_child_spec(configs, 'configs')
        zazu = ZaZu(opt_model, remote=True)
        zazu.find_best_model()
        zazu.hp_search()
コード例 #5
0
ファイル: zazu.py プロジェクト: karangurtu/ZazuML
        dataset_obj = get_dataset_obj(configs['dataloop'])
        id = dataset_obj.project.id

        if args.search:
            zazu_service.execute(function_name='search',
                                 execution_input=inputs,
                                 project_id=id)
        if args.predict:
            zazu_service.execute(function_name='predict',
                                 execution_input=inputs,
                                 project_id=id)

    else:
        logger = init_logging(__name__)
        this_path = path = os.getcwd()
        configs_path = os.path.join(this_path, 'configs.json')
        configs = ConfigSpec(configs_path)
        opt_model = OptModel()
        opt_model.add_child_spec(configs, 'configs')
        zazu = ZaZu(opt_model, remote=args.remote)
        if args.search:
            zazu.find_best_model()
            zazu.hp_search()
        if args.train:
            zazu.train_new_model()
        if args.predict:
            zazu.run_inference()
        if args.predict_once:
            zazu.one_time_inference('/home/noam/0120122798.jpg',
                                    'checkpoint0.pt')
コード例 #6
0
ファイル: zazu.py プロジェクト: nolll77/AutoML
    parser.add_argument("--update", action='store_true', default=False)
    parser.add_argument("--search", action='store_true', default=False)
    parser.add_argument("--train", action='store_true', default=False)
    parser.add_argument("--predict", action='store_true', default=False)
    parser.add_argument("--zazu_timer", action='store_true', default=False)
    parser.add_argument("--checkpoint_path", type=str, default='/home/noam/ZazuML/best_checkpoint.pt')
    parser.add_argument("--dataset_path", type=str, default='')
    parser.add_argument("--output_path", type=str, default='')
    args = parser.parse_args()

    with open('configs.json', 'r') as fp:
        configs = json.load(fp)
    logger = init_logging(__name__)
    this_path = path = os.getcwd()
    configs_path = os.path.join(this_path, 'configs.json')
    configs = ConfigSpec('configs.json')
    opt_model = OptModel('models.json')
    opt_model.add_child_spec(configs, 'configs')
    zazu = ZaZu(opt_model, remote=args.remote)
    if args.search:
        zazu.hp_search()
    if args.train:
        adapter = AdapterModel()
        adapter.load(checkpoint_path=args.checkpoint_path)
        adapter.train()
        print('model checkpoint is saved to: ', adapter.checkpoint_path)
    if args.predict:
        predict(pred_on_path=args.dataset_path, output_path=args.output_path,
                checkpoint_path=args.checkpoint_path, threshold=0.5)