コード例 #1
0
def exec_specmax(ddata, opts):
    p = {
        'expmt_group': '',
        'n_sim': 0,
        'n_trial': 0,
        't_interval': None,
        'f_interval': None,
        'f_sort': None,
        # 't_interval': [0., -1],
        # 'f_interval': [0., -1],
    }

    args_check(p, opts)

    p_exp = paramrw.ExpParams(ddata.fparam)
    # trial_prefix = p_exp.trial_prefix_str % (p['n_sim'], p['n_trial'])

    if not p['expmt_group']:
        p['expmt_group'] = ddata.expmt_groups[0]

    # Get the associated dipole and spec file
    fspec = ddata.return_specific_filename(p['expmt_group'], 'rawspec', p['n_sim'], p['n_trial'])

    # Load the spec data
    spec = specfn.Spec(fspec)

    # get max data
    data_max = spec.max('agg', p['t_interval'], p['f_interval'], p['f_sort'])

    if data_max:
        print "Max power of %4.2e at f of %4.2f Hz at %4.3f ms" % (data_max['pwr'], data_max['f_at_max'], data_max['t_at_max'])
コード例 #2
0
def exec_spec_stationary_avg(ddata, dsim, maxpwr):

    # Prompt user for type of analysis (per expmt or whole sim)
    analysis_type = raw_input('Would you like analysis per expmt or for whole sim? (expmt or sim): ')

    fspec_list = fio.file_match(ddata.dsim, '-spec.npz')
    fparam_list = fio.file_match(ddata.dsim, '-param.txt')
    # fspec_list = fio.file_match(ddata.dsim, '-spec.npz')
    # fparam_list = fio.file_match(ddata.dsim, '-param.txt')

    p_exp = paramrw.ExpParams(ddata.fparam)
    key_types = p_exp.get_key_types()

    # If no saved spec results exist, redo spec analysis
    if not fspec_list:
        print "No saved spec data found. Performing spec analysis...",
        exec_spec_regenerate(ddata)
        fspec_list = fio.file_match(ddata.dsim, '-spec.npz')
        # spec_results = exec_spec_regenerate(ddata)

        print "now doing spec freq-pwr analysis"

    # perform time-averaged stationary analysis
    # specpwr_results = [specfn.specpwr_stationary_avg(fspec) for fspec in fspec_list]
    specpwr_results = []

    for fspec in fspec_list:
        spec = specfn.Spec(fspec)
        specpwr_results.append(spec.stationary_avg())

    # plot for whole simulation
    if analysis_type == 'sim':

        file_name = os.path.join(dsim, 'specpwr.eps')
        pspec.pspecpwr(file_name, specpwr_results, fparam_list, key_types)

        # if maxpwr plot indicated
        if maxpwr:
            f_name = os.path.join(dsim, 'maxpwr.png')
            specfn.pmaxpwr(f_name, specpwr_results, fparam_list)

    # plot per expmt
    if analysis_type == 'expmt':
        for expmt_group in ddata.expmt_groups:
            # create name for figure. Figure saved to expmt directory
            file_name = os.path.join(dsim, expmt_group, 'specpwr.png')

            # compile list of freqpwr results and param pathways for expmt
            partial_results_list = [result for result in specpwr_results if result['expmt']==expmt_group]
            partial_fparam_list = [fparam for fparam in fparam_list if expmt_group in fparam]

            # plot results
            pspec.pspecpwr(file_name, partial_results_list, partial_fparam_list, key_types)

            # if maxpwr plot indicated
            if maxpwr:
                f_name = os.path.join(dsim, expmt_group, 'maxpwr.png')
                specfn.pmaxpwr(f_name, partial_results_list, partial_fparam_list)
コード例 #3
0
def exec_specmax_dpl_tmpl(ddata, opts):
    p = {
        'expmt_group': '',
        'n_sim': 0,
        'trials': [0, -1],
        't_interval': None,
        'f_interval': None,
        'f_sort': None,
    }

    args_check(p, opts)

    # set expmt group
    if not p['expmt_group']:
        p['expmt_group'] = ddata.expmt_groups[0]

    # set directory to save template in and check that it exists
    dir_out = os.path.join(ddata.dsim, p['expmt_group'], 'tmpldpl')
    fio.dir_create(dir_out)

    # if p['trials'][1] is -1, assume all trials are wanted
    # 1 is subtracted from N_trials to be consistent with manual entry of trial range
    if p['trials'][1] == -1:
        p_exp = paramrw.ExpParams(ddata.fparam)
        p['trials'][1] = p_exp.N_trials - 1

    # Get spec, dpl, and param files
    # Sorry for lack of readability
    spec_list = [ddata.return_specific_filename(p['expmt_group'], 'rawspec', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]
    dpl_list = [ddata.return_specific_filename(p['expmt_group'], 'rawdpl', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]
    param_list = [ddata.return_specific_filename(p['expmt_group'], 'param', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]

    # Get max spectral data
    data_max_list = []

    for fspec in spec_list:
        spec = specfn.Spec(fspec)
        data_max_list.append(spec.max('agg', p['t_interval'], p['f_interval'], p['f_sort']))

    # Get time intervals of max spectral pwr
    t_interval_list = [dmax['t_int'] for dmax in data_max_list if dmax is not None]

    # truncate dpl_list to include only sorted trials
    # kind of crazy that this works. Just sayin'...
    dpl_list = [fdpl for fdpl, dmax in zip(dpl_list, data_max_list) if dmax is not None]

    # create file name
    if p['f_sort']:
        fname_short = "sim-%03i-T%03i-T%03d-sort-%i-%i-tmpldpl.txt" %(p['n_sim'], p['trials'][0], p['trials'][1], p['f_sort'][0], p['f_sort'][1])

    else:
        fname_short = "sim-%03i-T%03i-T%03i-tmpldpl.txt" %(p['n_sim'], p['trials'][0], p['trials'][1])

    fname = os.path.join(dir_out, fname_short)

    # Create dpl template
    dipolefn.create_template(fname, dpl_list, param_list, t_interval_list)
コード例 #4
0
def exec_specmax_dpl_match(ddata, opts):
    p = {
        'expmt_group': '',
        'n_sim': 0,
        'trials': [0, -1],
        't_interval': None,
        'f_interval': None,
        'f_sort': None,
    }

    args_check(p, opts)

    # set expmt group
    if not p['expmt_group']:
        p['expmt_group'] = ddata.expmt_groups[0]

    # set directory to save fig in and check that it exists
    dir_fig = os.path.join(ddata.dsim, p['expmt_group'], 'figint')
    fio.dir_create(dir_fig)

    # if p['trials'][1] is -1, assume all trials are wanted
    # 1 is subtracted from N_trials to be consistent with manual entry of trial range
    if p['trials'][1] == -1:
        p_exp = paramrw.ExpParams(ddata.fparam)
        p['trials'][1] = p_exp.N_trials - 1

    # Get spec, dpl, and param files
    # Sorry for lack of readability
    spec_list = [ddata.return_specific_filename(p['expmt_group'], 'rawspec', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]
    dpl_list = [ddata.return_specific_filename(p['expmt_group'], 'rawdpl', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]
    param_list = [ddata.return_specific_filename(p['expmt_group'], 'param', p['n_sim'], i) for i in range(p['trials'][0], p['trials'][1]+1)]

    # Get max spectral data
    data_max_list = []

    for fspec in spec_list:
        spec = specfn.Spec(fspec)
        data_max_list.append(spec.max('agg', p['t_interval'], p['f_interval'], p['f_sort']))

    # create fig name
    if p['f_sort']:
        fname_short = "sim-%03i-T%03i-T%03d-sort-%i-%i" %(p['n_sim'], p['trials'][0], p['trials'][1], p['f_sort'][0], p['f_sort'][1])

    else:
        fname_short = "sim-%03i-T%03i-T%03i" %(p['n_sim'], p['trials'][0], p['trials'][1])

    fname = os.path.join(dir_fig, fname_short)

    # plot time-series over proper intervals
    dipolefn.plot_specmax_interval(fname, dpl_list, param_list, data_max_list)
コード例 #5
0
def pspec_with_hist(f_spec,
                    f_dpl,
                    f_spk,
                    dfig,
                    f_param,
                    key_types,
                    xlim=None,
                    ylim=None):
    # Generate file prefix
    # print('f_spec:',f_spec)
    fprefix = f_spec.split('/')[-1].split('.')[0]
    # Create the fig name
    fig_name = os.path.join(dfig, fprefix + '.png')
    # print('fig_name:',fig_name)
    # load param dict
    _, p_dict = paramrw.read(f_param)
    f = ac.FigSpecWithHist()
    # load spec data
    spec = specfn.Spec(f_spec)
    # Plot TFR data and add colorbar
    pc = spec.plot_TFR(f.ax['spec'], 'agg', xlim, ylim)
    f.f.colorbar(pc, ax=f.ax['spec'])
    # set xlim based on TFR plot
    xlim_new = f.ax['spec'].get_xlim()
    # grab the dipole data
    dpl = dipolefn.Dipole(f_dpl)
    dpl.baseline_renormalize(f_param)
    dpl.convert_fAm_to_nAm()
    # plot routine
    dpl.plot(f.ax['dipole'], xlim_new, 'agg')
    # data_dipole = np.loadtxt(open(f_dpl, 'r'))
    # t_dpl = data_dipole[xmin_ind:xmax_ind+1, 0]
    # dp_total = data_dipole[xmin_ind:xmax_ind+1, 1]
    # f.ax['dipole'].plot(t_dpl, dp_total)
    # x = (xmin, xmax)
    # # grab alpha feed data. spikes_from_file() from spikefn.py
    # s_dict = spikefn.spikes_from_file(f_param, f_spk)
    # # check for existance of alpha feed keys in s_dict.
    # s_dict = spikefn.alpha_feed_verify(s_dict, p_dict)
    # # Account for possible delays
    # s_dict = spikefn.add_delay_times(s_dict, p_dict)
    # Get extinput data and account for delays
    extinputs = spikefn.ExtInputs(f_spk, f_param)
    extinputs.add_delay_times()
    extinputs.get_envelope(dpl.t, feed='dist')
    # set number of bins (150 bins per 1000ms)
    bins = ceil(150. * (xlim_new[1] - xlim_new[0]) /
                1000.)  # bins should be int
    # plot histograms
    hist = {}
    hist['feed_prox'] = extinputs.plot_hist(f.ax['feed_prox'],
                                            'prox',
                                            dpl.t,
                                            bins=bins,
                                            xlim=xlim_new,
                                            color='red')
    hist['feed_dist'] = extinputs.plot_hist(f.ax['feed_dist'],
                                            'dist',
                                            dpl.t,
                                            bins=bins,
                                            xlim=xlim_new,
                                            color='green')
    f.ax['feed_dist'].invert_yaxis()
    # for now, set the xlim for the other one, force it!
    f.ax['dipole'].set_xlim(xlim_new)
    f.ax['spec'].set_xlim(xlim_new)
    f.ax['feed_prox'].set_xlim(xlim_new)
    f.ax['feed_dist'].set_xlim(xlim_new)
    # set hist axis props
    f.set_hist_props(hist)
    # axis labels
    f.ax['spec'].set_xlabel('Time (ms)')
    f.ax['spec'].set_ylabel('Frequency (Hz)')
    # Add legend to histogram
    for key in f.ax.keys():
        if 'feed' in key:
            f.ax[key].legend()
    # create title
    title_str = ac.create_title(p_dict, key_types)
    f.f.suptitle(title_str)
    f.savepng(fig_name)
    f.close()
コード例 #6
0
def pspec_dpl(f_spec,
              f_dpl,
              dfig,
              p_dict,
              key_types,
              xlim=None,
              ylim=None,
              f_param=None):
    # Generate file prefix
    fprefix = f_spec.split('/')[-1].split('.')[0]

    # using png for now
    # fig_name = os.path.join(dfig, fprefix+'.eps')
    fig_name = os.path.join(dfig, fprefix + '.png')

    # f.f is the figure handle!
    f = ac.FigSpec()

    # load spec data
    spec = specfn.Spec(f_spec)

    # Plot TFR data and add colorbar
    pc = spec.plot_TFR(f.ax['spec'], 'agg', xlim, ylim)
    f.f.colorbar(pc, ax=f.ax['spec'])

    # grab the dipole data
    # data_dipole = np.loadtxt(open(f_dpl, 'r'))
    dpl = dipolefn.Dipole(f_dpl)

    # If f_param supplied, renormalize dipole data
    if f_param:
        dpl.baseline_renormalize(f_param)
        dpl.convert_fAm_to_nAm()

    # plot routine
    dpl.plot(f.ax['dipole'], xlim, 'agg')

    # Plot Welch data
    # Use try/except for backwards compatibility
    try:
        spec.plot_pgram(f.ax['pgram'])

    except KeyError:
        pgram = specfn.Welch(dpl.t, dpl.dpl['agg'], p_dict['dt'])
        pgram.plot_to_ax(f.ax['pgram'], spec.spec['agg']['f'][-1])

    # plot and create an xlim
    xlim_new = f.ax['spec'].get_xlim()
    xticks = f.ax['spec'].get_xticks()
    xticks[0] = xlim_new[0]

    # for now, set the xlim for the other one, force it!
    f.ax['dipole'].set_xlim(xlim_new)
    f.ax['dipole'].set_xticks(xticks)
    f.ax['spec'].set_xticks(xticks)

    # axis labels
    f.ax['spec'].set_xlabel('Time (ms)')
    f.ax['spec'].set_ylabel('Frequency (Hz)')

    # create title
    title_str = ac.create_title(p_dict, key_types)
    f.f.suptitle(title_str)

    # use our fig classes to save and close
    f.savepng(fig_name)
    # f.saveeps(dfig, fprefix)
    f.close()
コード例 #7
0
def aggregate_with_hist(f, ax, f_spec, f_dpl, f_spk, f_param):
    # load param dict
    _, p_dict = paramrw.read(f_param)

    # load spec data from file
    spec = specfn.Spec(f_spec)
    # data_spec = np.load(f_spec)

    # timevec = data_spec['time']
    # freqvec = data_spec['freq']
    # TFR = data_spec['TFR']

    xmin = timevec[0]
    xmax = p_dict['tstop']
    x = (xmin, xmax)

    pc = spec.plot_TFR(ax['spec'], layer='agg', xlim=x)
    # pc = ax['spec'].imshow(TFR, extent=[timevec[0], timevec[-1], freqvec[-1], freqvec[0]], aspect='auto', origin='upper')
    f.f.colorbar(pc,
                 ax=ax['spec'],
                 norm=plt.colors.Normalize(vmin=0, vmax=90000),
                 cmap=plt.get_cmap('jet'))

    # grab the dipole data
    dpl = dipolefn.Dipole(f_dpl)
    dpl.plot(ax['dipole'], x, layer='agg')
    # data_dipole = np.loadtxt(open(f_dpl, 'r'))

    # t_dpl = data_dipole[xmin/p_dict['dt']:, 0]
    # dp_total = data_dipole[xmin/p_dict['dt']:, 1]

    # ax['dipole'].plot(t_dpl, dp_total)

    # grab alpha feed data. spikes_from_file() from spikefn.py
    s_dict = spikefn.spikes_from_file(f_param, f_spk)

    # check for existance of alpha feed keys in s_dict.
    s_dict = spikefn.alpha_feed_verify(s_dict, p_dict)

    # Account for possible delays
    s_dict = spikefn.add_delay_times(s_dict, p_dict)

    # set number of bins (150 bins/1000ms)
    bins = 150. * (xmax - xmin) / 1000.

    hist = {}

    # Proximal feed
    hist['feed_prox'] = ax['feed_prox'].hist(
        s_dict['alpha_feed_prox'].spike_list,
        bins,
        range=[xmin, xmax],
        color='red',
        label='Proximal feed')

    # Distal feed
    hist['feed_dist'] = ax['feed_dist'].hist(
        s_dict['alpha_feed_dist'].spike_list,
        bins,
        range=[xmin, xmax],
        color='green',
        label='Distal feed')

    # for now, set the xlim for the other one, force it!
    ax['dipole'].set_xlim(x)
    ax['spec'].set_xlim(x)
    ax['feed_prox'].set_xlim(x)
    ax['feed_dist'].set_xlim(x)

    # set hist axis props
    f.set_hist_props(ax, hist)

    # axis labels
    ax['spec'].set_xlabel('Time (ms)')
    ax['spec'].set_ylabel('Frequency (Hz)')

    # Add legend to histogram
    for key in ax.keys():
        if 'feed' in key:
            ax[key].legend()
コード例 #8
0
def exec_spec_avg_stationary_avg(ddata, dsim, opts):

    # Prompt user for type of analysis (per expmt or whole sim)
    analysis_type = raw_input('Would you like analysis per expmt or for whole sim? (expmt or sim): ')

    spec_results_avged = fio.file_match(ddata.dsim, '-specavg.npz')
    fparam_list = fio.file_match(ddata.dsim, '-param.txt')

    p_exp = paramrw.ExpParams(ddata.fparam)
    key_types = p_exp.get_key_types()

    # If no avg spec data found, generate it.
    if not spec_results_avged:
        exec_avgtrials(ddata, 'spec')
        spec_results_avged = fio.file_match(ddata.dsim, '-specavg.npz')

    # perform time-averaged stationarity analysis
    # specpwr_results = [specfn.specpwr_stationary_avg(dspec) for dspec in spec_results_avged]
    specpwr_results = []

    for fspec in spec_results_avged:
        spec = specfn.Spec(fspec)
        specpwr_results.append(spec.stationary_avg())

    # create fparam list to match avg'ed data
    N_trials = p_exp.N_trials
    nums = np.arange(0, len(fparam_list), N_trials)
    fparam_list = [fparam_list[num] for num in nums]

    # plot for whole simulation
    if analysis_type == 'sim':

        # if error bars indicated
        if opts['errorbars']:
            # get raw (non avg'ed) spec data
            raw_spec_data = fio.file_match(ddata.dsim, '-spec.npz')

            # perform freqpwr analysis on raw data
            # raw_specpwr = [specfn.specpwr_stationary_avg(dspec)['p_avg'] for dspec in raw_spec_data]
            raw_specpwr = []

            for fspec in raw_spec_data:
                spec = specfn.Spec(fspec)
                raw_specpwr.append(spec.stationary_avg()['p_avg'])

            # calculate standard error
            error_vec = specfn.calc_stderror(raw_specpwr)

        else:
            error_vec = []

        file_name = os.path.join(dsim, 'specpwr-avg.eps')
        pspec.pspecpwr(file_name, specpwr_results, fparam_list, key_types, error_vec)

        # # if maxpwr plot indicated
        # if maxpwr:
        #     f_name = os.path.join(dsim, 'maxpwr-avg.png')
        #     specfn.pmaxpwr(f_name, freqpwr_results_list, fparam_list)

    # plot per expmt
    if analysis_type == 'expmt':
        for expmt_group in ddata.expmt_groups:
            # if error bars indicated
            if opts['errorbars']:
                # get exmpt group raw spec data
                raw_spec_data = ddata.file_match(expmt_group, 'rawspec')

                # perform stationary analysis on raw data
                raw_specpwr = [specfn.specpwr_stationary_avg(dspec)['p_avg'] for dspec in raw_spec_data]

                # calculate standard error
                error_vec = specfn.calc_stderror(raw_specpwr)

            else:
                error_vec = []

            # create name for figure. Figure saved to expmt directory
            file_name = os.path.join(dsim, expmt_group, 'specpwr-avg.png')

            # compile list of specpwr results and param pathways for expmt
            partial_results_list = [result for result in specpwr_results if result['expmt']==expmt_group]
            partial_fparam_list = [fparam for fparam in fparam_list if expmt_group in fparam]

            # plot results
            pspec.pspecpwr(file_name, partial_results_list, partial_fparam_list, key_types, error_vec)
コード例 #9
0
def exec_phaselock(ddata, opts):
    p = {
        't_interval': [50, 1000],
        'f_max': 60.,
    }
    args_check(p, opts)

    # Do this per expmt group
    for expmt_group in ddata.expmt_groups:
        # Get paths to relevant files
        list_dpl = ddata.file_match(expmt_group, 'rawdpl')
        list_spk = ddata.file_match(expmt_group, 'rawspk')
        list_param = ddata.file_match(expmt_group, 'param')

        avg_spec = ddata.file_match(expmt_group, 'avgspec')[0]

        tmp_array_dpl = []
        tmp_array_spk = []

        for f_dpl, f_spk, f_param in zip(list_dpl, list_spk, list_param):
            # load Dpl data, do stuff, and store it
            print f_dpl
            dpl = dipolefn.Dipole(f_dpl)
            dpl.baseline_renormalize(f_param)
            dpl.convert_fAm_to_nAm()
            t, dp = dpl.truncate_ext(p['t_interval'][0], p['t_interval'][1])
            dp = dp['agg']
            tmp_array_dpl.append(dp)

            # Load extinput data, do stuff, and store it
            try:
                extinput = spikefn.ExtInputs(f_spk, f_param)
            except ValueError:
                print("Error: could not load spike timings from %s" % f_spk)
                return

            extinput.add_delay_times()
            extinput.get_envelope(dpl.t, feed='dist', bins=150)
            inputs, t = extinput.truncate_ext('env', p['t_interval'])
            tmp_array_spk.append(inputs)

        # Convert tmp arrays (actually lists) to numpy nd arrays
        array_dpl = np.array(tmp_array_dpl)
        array_spk = np.array(tmp_array_spk)

        # Phase-locking analysis
        phase = specfn.PhaseLock(array_dpl, array_spk, list_param[0], p['f_max'])

        fname_d = os.path.join(ddata.dsim, expmt_group, 'phaselock-%iHz.npz' %p['f_max'])
        np.savez_compressed(fname_d, t=phase.data['t'], f=phase.data['f'], B=phase.data['B'])

        # Plotting
        # Should be moved elsewhere
        avg_dpl = np.mean(array_dpl, axis=0)
        avg_spk = np.mean(array_spk, axis=0)

        f = ac.FigPhase()

        extent_xy = [t[0], t[-1], phase.data['f'][-1], 0]
        pc1 = f.ax['phase'].imshow(phase.data['B'], extent=extent_xy, aspect='auto', origin='upper',cmap=plt.get_cmap('jet'))
        pc1.set_clim([0, 1])
        cb1 = f.f.colorbar(pc1, ax=f.ax['phase'])
        # cb1.set_clim([0, 1])

        spec = specfn.Spec(avg_spec)
        pc2 = spec.plot_TFR(f.ax['spec'], xlim=[t[0], t[-1]])
        pc2.set_clim([0, 3.8e-7])
        cb2 = f.f.colorbar(pc2, ax=f.ax['spec'])
        # cb2.set_clim([0, 3.6e-7])

        f.ax['dipole'].plot(t, avg_dpl)
        f.ax['dipole'].set_xlim([t[0], t[-1]])
        f.ax['dipole'].set_ylim([-0.0015, 0.0015])

        f.ax['input'].plot(t, avg_spk)
        f.ax['input'].set_xlim([t[0], t[-1]])
        f.ax['input'].set_ylim([-1, 5])
        f.ax['input'].invert_yaxis()

        f.ax['phase'].set_xlabel('Time (ms)')
        f.ax['phase'].set_ylabel('Frequency (Hz)')

        fname = os.path.join(ddata.dsim, expmt_group, 'phaselock-%iHz.png' %p['f_max'])
        print fname

        f.savepng(fname)