コード例 #1
0
    def __init__(
        self,
        in_channels,
        out_channels,
        intra_model,
        inter_model,
        num_layers=1,
        norm="ln",
        K=200,
        num_spks=2,
        skip_around_intra=True,
        linear_layer_after_inter_intra=True,
        use_global_pos_enc=False,
        max_length=20000,
    ):
        super(Dual_Path_Model, self).__init__()
        self.K = K
        self.num_spks = num_spks
        self.num_layers = num_layers
        self.norm = select_norm(norm, in_channels, 3)
        self.conv1d = nn.Conv1d(in_channels, out_channels, 1, bias=False)
        self.use_global_pos_enc = use_global_pos_enc

        if self.use_global_pos_enc:
            self.pos_enc = PositionalEncoding(max_length)

        self.dual_mdl = nn.ModuleList([])
        for i in range(num_layers):
            self.dual_mdl.append(
                copy.deepcopy(
                    Dual_Computation_Block(
                        intra_model,
                        inter_model,
                        out_channels,
                        norm,
                        skip_around_intra=skip_around_intra,
                        linear_layer_after_inter_intra=linear_layer_after_inter_intra,
                    )
                )
            )

        self.conv2d = nn.Conv2d(
            out_channels, out_channels * num_spks, kernel_size=1
        )
        self.end_conv1x1 = nn.Conv1d(out_channels, in_channels, 1, bias=False)
        self.prelu = nn.PReLU()
        self.activation = nn.ReLU()
        # gated output layer
        self.output = nn.Sequential(
            nn.Conv1d(out_channels, out_channels, 1), nn.Tanh()
        )
        self.output_gate = nn.Sequential(
            nn.Conv1d(out_channels, out_channels, 1), nn.Sigmoid()
        )
コード例 #2
0
    def __init__(
        self,
        num_layers,
        d_model,
        nhead,
        d_ffn=2048,
        input_shape=None,
        kdim=None,
        vdim=None,
        dropout=0.1,
        activation="swish",
        kernel_size=31,
        bias=True,
        use_positional_encoding=False,
    ):
        super(SBConformerEncoderBlock, self).__init__()
        self.use_positional_encoding = use_positional_encoding

        if activation == "relu":
            activation = nn.ReLU
        elif activation == "gelu":
            activation = nn.GELU
        elif activation == "swish":
            activation = Swish
        else:
            raise ValueError("unknown activation")

        self.mdl = ConformerEncoder(
            num_layers=num_layers,
            nhead=nhead,
            d_ffn=d_ffn,
            input_shape=input_shape,
            d_model=d_model,
            kdim=kdim,
            vdim=vdim,
            dropout=dropout,
            activation=activation,
            kernel_size=kernel_size,
            bias=bias,
        )

        if use_positional_encoding:
            self.pos_enc = PositionalEncoding(input_size=d_model)
コード例 #3
0
    def __init__(
        self,
        num_layers,
        d_model,
        nhead,
        d_ffn=2048,
        input_shape=None,
        kdim=None,
        vdim=None,
        dropout=0.1,
        activation="relu",
        return_attention=False,
        num_modules=1,
        use_group_comm=False,
        use_positional_encoding=False,
        norm_before=False,
    ):
        super(SBTransformerBlock, self).__init__()
        self.use_positional_encoding = use_positional_encoding

        if activation == "relu":
            activation = nn.ReLU
        elif activation == "gelu":
            activation = nn.GELU
        else:
            raise ValueError("unknown activation")

        self.mdl = TransformerEncoder(
            num_layers=num_layers,
            nhead=nhead,
            d_ffn=d_ffn,
            input_shape=input_shape,
            d_model=d_model,
            kdim=kdim,
            vdim=vdim,
            dropout=dropout,
            activation=activation,
            normalize_before=norm_before,
        )

        if use_positional_encoding:
            self.pos_enc = PositionalEncoding(input_size=d_model)