コード例 #1
0
def test_modes_ops():
    X = np.array([[1, 0], [0, 1], [1, 1], [0, 0], [1, 2]])
    I = np.array([0, 0, 0, 1, 1])

    A_data = [1, 1, 1, 1, 1]
    A_row = [0, 1, 2, 3, 4]
    A_col = [1, 0, 1, 4, 3]
    A_sparse = csr_matrix((A_data, (A_row, A_col)), shape=(5, 5))
    A_sparse_tensor = ops.sp_matrix_to_sp_tensor(A_sparse)

    # Disjoint signal to batch
    expected_result = np.array(
        [[[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]], [[0.0, 0.0], [1.0, 2.0], [0.0, 0.0]]]
    )
    result = ops.disjoint_signal_to_batch(X, I).numpy()

    assert expected_result.shape == result.shape
    assert np.allclose(expected_result, result)

    # Disjoint adjacency to batch
    expected_result = np.array(
        [
            [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]],
            [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
        ]
    )

    result = ops.disjoint_adjacency_to_batch(A_sparse_tensor, I).numpy()

    assert expected_result.shape == result.shape
    assert np.allclose(expected_result, result)
コード例 #2
0
def test_modes_ops():
    ns = [10, 5, 8]
    x_list = [np.random.randn(n, 3) for n in ns]
    a_list = [sp.csr_matrix(np.ones((n, n))) for n in ns]

    x, a, i = to_disjoint(x_list, a_list)
    a = sp_matrix_to_sp_tensor(a)

    expected_x = np.zeros((len(ns), max(ns), 3))
    for i_, n in enumerate(ns):
        expected_x[i_, :n] = x_list[i_]

    expected_a = np.zeros((len(ns), max(ns), max(ns)))
    for i_, n in enumerate(ns):
        expected_a[i_, :n, :n] = a_list[i_].A

    # Disjoint signal to batch
    result = ops.disjoint_signal_to_batch(x, i).numpy()

    assert expected_x.shape == result.shape
    assert np.allclose(expected_x, result, atol=tol)

    # Disjoint adjacency to batch
    result = ops.disjoint_adjacency_to_batch(a, i).numpy()

    assert expected_a.shape == result.shape
    assert np.allclose(expected_a, result, atol=tol)
コード例 #3
0
ファイル: base.py プロジェクト: zhenghang/spektral
    def call(self, inputs, **kwargs):
        X, A, I = inputs

        batch_X = ops.disjoint_signal_to_batch(X, I)
        batch_A = ops.disjoint_adjacency_to_batch(A, I)

        # Ensure that the channel dimension is known
        batch_X.set_shape((None, None, X.shape[-1]))
        batch_A.set_shape((None, None, None))

        return batch_X, batch_A