コード例 #1
0
    def run(self, dataSlice, slicePoint=None):
        # RA and Dec from dataSlice doesn't necessarily match healpix
        RA = dataSlice['fieldRA'][0]
        Dec = dataSlice['fieldDec'][0]
        # Get RA and Dec from slicer
        RA = slicePoint['ra']
        Dec = slicePoint['dec']
        nside = slicePoint['nside']
        # get the boundaries from HealPix
        bounding = hp.boundaries(nside, slicePoint['sid'], step=1).T
        inside_val = np.asarray(
            sgv.radec_to_vector(slicePoint['ra'],
                                slicePoint['dec'],
                                degrees=False))
        test_pointing = SphericalPolygon(bounding, inside_val)

        overlap_area = [
            test_pointing.intersection(survey_polygon).area()
            for survey_polygon in survey_list[self.region_name]
        ]
        total = sum(overlap_area)
        healpix_area = test_pointing.area()
        return min(total, 4 * np.pi - total)
コード例 #2
0
class SkyImage:
    """
    Container that holds information about properties of a *single*
    image such as:

    * image data;
    * WCS of the chip image;
    * bounding spherical polygon;
    * id;
    * pixel area;
    * sky background value;
    * sky statistics parameters;
    * mask associated image data indicating "good" (1) data.

    """
    def __init__(self,
                 image,
                 wcs_fwd,
                 wcs_inv,
                 pix_area=1.0,
                 convf=1.0,
                 mask=None,
                 id=None,
                 skystat=None,
                 stepsize=None,
                 meta=None):
        """ Initializes the SkyImage object.

        Parameters
        ----------
        image : numpy.ndarray
            A 2D array of image data.

        wcs_fwd : function
            "forward" pixel-to-world transformation function.

        wcs_inv : function
            "inverse" world-to-pixel transformation function.

        pix_area : float, optional
            Average pixel's sky area.

        convf : float, optional
            Conversion factor that when multiplied to `image` data converts
            the data to "uniform" (across multiple images) surface
            brightness units.

            .. note::

              The functionality to support this conversion is not yet
              implemented and at this moment `convf` is ignored.

        mask : numpy.ndarray
            A 2D array that indicates
            what pixels in the input `image` should be used for sky
            computations (``1``) and which pixels should **not** be used
            for sky computations (``0``).

        id : anything
            The value of this parameter is simple stored within the `SkyImage`
            object. While it can be of any type, it is prefereble that `id` be
            of a type with nice string representation.

        skystat : callable, None, optional
            A callable object that takes a either a 2D image (2D
            `numpy.ndarray`) or a list of pixel values (a Nx1 array) and
            returns a tuple of two values: some statistics (e.g., mean,
            median, etc.) and number of pixels/values from the input image
            used in computing that statistics.

            When `skystat` is not set, `SkyImage` will use
            :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object
            to perform sky statistics on image data.

        stepsize : int, None, optional
            Spacing between vertices of the image's bounding polygon. Default
            value of `None` creates bounding polygons with four vertices
            corresponding to the corners of the image.

        meta : dict, None, optional
            A dictionary of various items to be stored within the `SkyImage`
            object.

        """
        self.image = image
        self.convf = convf
        self.meta = meta
        self._id = id
        self._pix_area = pix_area

        # WCS
        self.wcs_fwd = wcs_fwd
        self.wcs_inv = wcs_inv

        # initial sky value:
        self._sky = 0.0

        # check that mask has the same shape as image:
        if mask is None:
            self.mask = None

        else:
            if image is None:
                raise ValueError("'mask' must be None when 'image' is None")

            self.mask = np.asanyarray(mask, dtype=np.bool)

            if self.mask.shape != image.shape:
                raise ValueError("'mask' must have the same shape as 'image'.")

        # create spherical polygon bounding the image
        if image is None or wcs_fwd is None or wcs_inv is None:
            self._radec = [(np.array([]), np.array([]))]
            self._polygon = SphericalPolygon([])
            self._poly_area = 0.0

        else:
            self.calc_bounding_polygon(stepsize)

        # set sky statistics function (NOTE: it must return statistics and
        # the number of pixels used after clipping)
        if skystat is None:
            self.set_builtin_skystat()
        else:
            self.skystat = skystat

    @property
    def id(self):
        """ Set or get `SkyImage`'s `id`.

        While `id` can be of any type, it is prefereble that `id` be
        of a type with nice string representation.

        """
        return self._id

    @id.setter
    def id(self, id):
        self._id = id

    @property
    def pix_area(self):
        """ Set or get mean pixel area.
        """
        return self._pix_area

    @pix_area.setter
    def pix_area(self, pix_area):
        self._pix_area = pix_area

    @property
    def poly_area(self):
        """ Get bounding polygon area in srad units.
        """
        return self._poly_area

    @property
    def sky(self):
        """ Sky background value. See `calc_sky` for more details.
        """
        return self._sky

    @sky.setter
    def sky(self, sky):
        self._sky = sky

    @property
    def radec(self):
        """
        Get RA and DEC of the verteces of the bounding polygon as a
        `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1.
        """
        return self._radec

    @property
    def polygon(self):
        """ Get image's bounding polygon.
        """
        return self._polygon

    def intersection(self, skyimage):
        """
        Compute intersection of this `SkyImage` object and another
        `SkyImage`, `SkyGroup`, or
        :py:class:`~spherical_geometry.polygon.SphericalPolygon`
        object.

        Parameters
        ----------
        skyimage : SkyImage, SkyGroup, SphericalPolygon
            Another object that should be intersected with this `SkyImage`.

        Returns
        -------
        polygon : SphericalPolygon
            A :py:class:`~spherical_geometry.polygon.SphericalPolygon` that is
            the intersection of this `SkyImage` and `skyimage`.

        """
        if isinstance(skyimage, (SkyImage, SkyGroup)):
            return self._polygon.intersection(skyimage.polygon)
        else:
            return self._polygon.intersection(skyimage)

    def calc_bounding_polygon(self, stepsize=None):
        """ Compute image's bounding polygon.

        Parameters
        ----------
        stepsize : int, None, optional
            Indicates the maximum separation between two adjacent vertices
            of the bounding polygon along each side of the image. Corners
            of the image are included automatically. If `stepsize` is `None`,
            bounding polygon will contain only vertices of the image.

        """
        ny, nx = self.image.shape

        if stepsize is None:
            nintx = 2
            ninty = 2
        else:
            nintx = max(2, int(np.ceil((nx + 1.0) / stepsize)))
            ninty = max(2, int(np.ceil((ny + 1.0) / stepsize)))

        xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float)
        ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1]
        nptx = xs.size
        npty = ys.size

        npts = 2 * (nptx + npty)

        borderx = np.empty((npts + 1, ), dtype=np.float)
        bordery = np.empty((npts + 1, ), dtype=np.float)

        # "bottom" points:
        borderx[:nptx] = xs
        bordery[:nptx] = -0.5
        # "right"
        sl = np.s_[nptx:nptx + npty]
        borderx[sl] = nx - 0.5
        bordery[sl] = ys
        # "top"
        sl = np.s_[nptx + npty:2 * nptx + npty]
        borderx[sl] = xs[::-1]
        bordery[sl] = ny - 0.5
        # "left"
        sl = np.s_[2 * nptx + npty:-1]
        borderx[sl] = -0.5
        bordery[sl] = ys[::-1]

        # close polygon:
        borderx[-1] = borderx[0]
        bordery[-1] = bordery[0]

        ra, dec = self.wcs_fwd(borderx, bordery, with_bounding_box=False)
        # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or
        #       dec[0] != dec[-1] (even though we close the polygon in the
        #       previous two lines). Then SphericalPolygon fails because
        #       points are not closed. Threfore we force it to be closed:
        ra[-1] = ra[0]
        dec[-1] = dec[0]

        self._radec = [(ra, dec)]
        self._polygon = SphericalPolygon.from_radec(ra, dec)
        self._poly_area = np.fabs(self._polygon.area())

    @property
    def skystat(self):
        """ Stores/retrieves a callable object that takes a either a 2D image
        (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and
        returns a tuple of two values: some statistics
        (e.g., mean, median, etc.) and number of pixels/values from the input
        image used in computing that statistics.

        When `skystat` is not set, `SkyImage` will use
        :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object
        to perform sky statistics on image data.

        """
        return self._skystat

    @skystat.setter
    def skystat(self, skystat):
        self._skystat = skystat

    def set_builtin_skystat(self,
                            skystat='median',
                            lower=None,
                            upper=None,
                            nclip=5,
                            lsigma=4.0,
                            usigma=4.0,
                            binwidth=0.1):
        """
        Replace already set `skystat` with a "built-in" version of a
        statistics callable object used to measure sky background.

        See :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` for the
        parameter description.

        """
        self._skystat = SkyStats(skystat=skystat,
                                 lower=lower,
                                 upper=upper,
                                 nclip=nclip,
                                 lsig=lsigma,
                                 usig=usigma,
                                 binwidth=binwidth)

    # TODO: due to a bug in the sphere package, see
    #       https://github.com/spacetelescope/sphere/issues/74
    #       intersections with polygons formed as union does not work.
    #       For this reason I re-implement 'calc_sky' below with
    #       a workaround for the bug.
    #       The original implementation (now called ``_calc_sky_orig``
    #       should replace current 'calc_sky' once the bug is fixed.
    #
    def calc_sky(self, overlap=None, delta=True):
        """
        Compute sky background value.

        Parameters
        ----------
        overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \
None, optional
            Another `SkyImage`, `SkyGroup`,
            :py:class:`spherical_geometry.polygons.SphericalPolygon`, or
            a list of tuples of (RA, DEC) of vertices of a spherical
            polygon. This parameter is used to indicate that sky statistics
            should computed only in the region of intersection of *this*
            image with the polygon indicated by `overlap`. When `overlap` is
            `None`, sky statistics will be computed over the entire image.

        delta : bool, optional
            Should this function return absolute sky value or the difference
            between the computed value and the value of the sky stored in the
            `sky` property.

        Returns
        -------
        skyval : float, None
            Computed sky value (absolute or relative to the `sky` attribute).
            If there are no valid data to perform this computations (e.g.,
            because this image does not overlap with the image indicated by
            `overlap`), `skyval` will be set to `None`.

        npix : int
            Number of pixels used to compute sky statistics.

        polyarea : float
            Area (in srad) of the polygon that bounds data used to compute
            sky statistics.

        """
        if overlap is None:

            if self.mask is None:
                data = self.image
            else:
                data = self.image[self.mask]

            polyarea = self.poly_area

        else:
            fill_mask = np.zeros(self.image.shape, dtype=bool)

            if isinstance(overlap, SkyImage):
                intersection = self.intersection(overlap)
                polyarea = np.fabs(intersection.area())
                radec = list(intersection.to_radec())

            elif isinstance(overlap, SkyGroup):
                radec = []
                polyarea = 0.0
                for im in overlap:
                    intersection = self.intersection(im)
                    polyarea1 = np.fabs(intersection.area())
                    if polyarea1 == 0.0:
                        continue
                    polyarea += polyarea1
                    radec += list(intersection.to_radec())

            elif isinstance(overlap, SphericalPolygon):
                radec = []
                polyarea = 0.0
                for p in overlap._polygons:
                    intersection = self.intersection(SphericalPolygon([p]))
                    polyarea1 = np.fabs(intersection.area())
                    if polyarea1 == 0.0:
                        continue
                    polyarea += polyarea1
                    radec += list(intersection.to_radec())

            else:  # assume a list of (ra, dec) tuples:
                radec = []
                polyarea = 0.0
                for r, d in overlap:
                    poly = SphericalPolygon.from_radec(r, d)
                    polyarea1 = np.fabs(poly.area())
                    if polyarea1 == 0.0 or len(r) < 4:
                        continue
                    polyarea += polyarea1
                    radec.append(self.intersection(poly).to_radec())

            if polyarea == 0.0:
                return (None, 0, 0.0)

            for ra, dec in radec:
                if len(ra) < 4:
                    continue

                # set pixels in 'fill_mask' that are inside a polygon to True:
                x, y = self.wcs_inv(ra, dec)
                poly_vert = list(zip(*[x, y]))

                polygon = region.Polygon(True, poly_vert)
                fill_mask = polygon.scan(fill_mask)

            if self.mask is not None:
                fill_mask &= self.mask

            data = self.image[fill_mask]

            if data.size < 1:
                return (None, 0, 0.0)

        # Calculate sky
        try:

            skyval, npix = self._skystat(data)

        except ValueError:

            return (None, 0, 0.0)

        if delta:
            skyval -= self._sky

        return skyval, npix, polyarea

    def _calc_sky_orig(self, overlap=None, delta=True):
        """
        Compute sky background value.

        Parameters
        ----------
        overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \
None, optional
            Another `SkyImage`, `SkyGroup`,
            :py:class:`spherical_geometry.polygons.SphericalPolygon`, or
            a list of tuples of (RA, DEC) of vertices of a spherical
            polygon. This parameter is used to indicate that sky statistics
            should computed only in the region of intersection of *this*
            image with the polygon indicated by `overlap`. When `overlap` is
            `None`, sky statistics will be computed over the entire image.

        delta : bool, optional
            Should this function return absolute sky value or the difference
            between the computed value and the value of the sky stored in the
            `sky` property.

        Returns
        -------
        skyval : float, None
            Computed sky value (absolute or relative to the `sky` attribute).
            If there are no valid data to perform this computations (e.g.,
            because this image does not overlap with the image indicated by
            `overlap`), `skyval` will be set to `None`.

        npix : int
            Number of pixels used to compute sky statistics.

        polyarea : float
            Area (in srad) of the polygon that bounds data used to compute
            sky statistics.

        """

        if overlap is None:

            if self.mask is None:
                data = self.image
            else:
                data = self.image[self.mask]

            polyarea = self.poly_area

        else:
            fill_mask = np.zeros(self.image.shape, dtype=bool)

            if isinstance(overlap, (SkyImage, SkyGroup, SphericalPolygon)):
                intersection = self.intersection(overlap)
                polyarea = np.fabs(intersection.area())
                radec = intersection.to_radec()

            else:  # assume a list of (ra, dec) tuples:
                radec = []
                polyarea = 0.0
                for r, d in overlap:
                    poly = SphericalPolygon.from_radec(r, d)
                    polyarea1 = np.fabs(poly.area())
                    if polyarea1 == 0.0 or len(r) < 4:
                        continue
                    polyarea += polyarea1
                    radec.append(self.intersection(poly).to_radec())

            if polyarea == 0.0:
                return (None, 0, 0.0)

            for ra, dec in radec:
                if len(ra) < 4:
                    continue

                # set pixels in 'fill_mask' that are inside a polygon to True:
                x, y = self.wcs_inv(ra, dec)
                poly_vert = list(zip(*[x, y]))

                polygon = region.Polygon(True, poly_vert)
                fill_mask = polygon.scan(fill_mask)

            if self.mask is not None:
                fill_mask &= self.mask

            data = self.image[fill_mask]

            if data.size < 1:
                return (None, 0, 0.0)

        # Calculate sky
        try:

            skyval, npix = self._skystat(data)

        except ValueError:

            return (None, 0, 0.0)

        if delta:
            skyval -= self._sky

        return skyval, npix, polyarea

    def copy(self):
        """
        Return a shallow copy of the `SkyImage` object.
        """
        si = SkyImage(image=None,
                      wcs_fwd=self.wcs_fwd,
                      wcs_inv=self.wcs_inv,
                      pix_area=self.pix_area,
                      convf=self.convf,
                      mask=None,
                      id=self.id,
                      stepsize=None,
                      meta=self.meta)
        si.image = self.image
        si.mask = self.mask
        si._radec = self._radec
        si._polygon = self._polygon
        si._poly_area = self._poly_area
        si.sky = self.sky
        return si
コード例 #3
0
def test_geos1():
    """do second test posted to bug report"""
    n_fill = 10

    theta1_high_fill = np.full(n_fill, 5.)
    theta1_low_fill = np.full(n_fill, -65.)
    phi1_high_fill = np.linspace(50. - 360., 50. - 1., n_fill)
    phi1_low_fill = phi1_high_fill[::-1]
    theta1s = np.hstack(
        [theta1_high_fill, theta1_low_fill, theta1_high_fill[0]])
    phi1s = np.hstack([phi1_high_fill, phi1_low_fill, phi1_high_fill[0]])

    phi_in1 = 0.
    theta_in1 = 70.

    bounding_xyz1 = np.array(sgv.radec_to_vector(phi1s, theta1s,
                                                 degrees=True)).T
    inside_xyz1 = np.array(
        sgv.radec_to_vector(phi_in1, theta_in1, degrees=True))
    sp_poly1 = SphericalPolygon(bounding_xyz1, inside=inside_xyz1)

    theta2_high_fill = np.full(n_fill, -30.)
    theta2_low_fill = np.full(n_fill, -85.)
    phi2_high_fill = np.linspace(65 - 360., 55. - 10., n_fill)
    phi2_low_fill = np.linspace(5 - 360., 5. - 10., n_fill)[::-1]
    theta2s = np.hstack(
        [theta2_high_fill, theta2_low_fill, theta2_high_fill[0]])
    phi2s = np.hstack([phi2_high_fill, phi2_low_fill, phi2_high_fill[0]])

    phi_in2 = 0.
    theta_in2 = 70.

    bounding_xyz2 = np.array(sgv.radec_to_vector(phi2s, theta2s,
                                                 degrees=True)).T
    inside_xyz2 = np.array(
        sgv.radec_to_vector(phi_in2, theta_in2, degrees=True))
    sp_poly2 = SphericalPolygon(bounding_xyz2, inside=inside_xyz2)

    int_poly = sp_poly2.intersection(sp_poly1)

    theta_out = -50. * np.pi / 180.
    phi_out = 0.
    outside_xyz = np.array(
        sgv.radec_to_vector(phi_out, theta_out, degrees=False))

    theta_in3 = 70. * np.pi / 180.
    phi_in3 = 0.
    inside_xyz3 = np.array(
        sgv.radec_to_vector(phi_in3, theta_in3, degrees=False))

    print("area int, area 1,area 2: ", int_poly.area(), sp_poly1.area(),
          sp_poly2.area())
    print("Should be True , True : ",
          int_poly.area() <= sp_poly1.area(),
          int_poly.area() <= sp_poly2.area())
    assert int_poly.area() <= sp_poly1.area()
    assert int_poly.area() <= sp_poly2.area()

    assert not int_poly.contains_point(outside_xyz)
    assert not sp_poly1.contains_point(outside_xyz)
    assert not sp_poly2.contains_point(outside_xyz)
    print("Should be True ,True ,True : ",
          int_poly.contains_point(inside_xyz1),
          sp_poly1.contains_point(inside_xyz1),
          sp_poly2.contains_point(inside_xyz1))
    assert int_poly.contains_point(inside_xyz1)
    assert sp_poly1.contains_point(inside_xyz1)
    assert sp_poly2.contains_point(inside_xyz1)
    print("Should be True ,True ,True : ",
          int_poly.contains_point(inside_xyz2),
          sp_poly1.contains_point(inside_xyz2),
          sp_poly2.contains_point(inside_xyz2))
    assert int_poly.contains_point(inside_xyz2)
    assert sp_poly1.contains_point(inside_xyz2)
    assert sp_poly2.contains_point(inside_xyz2)
    print("Should be True ,True ,True : ",
          int_poly.contains_point(inside_xyz3),
          sp_poly1.contains_point(inside_xyz3),
          sp_poly2.contains_point(inside_xyz3))
    assert int_poly.contains_point(inside_xyz3)
    assert sp_poly1.contains_point(inside_xyz3)
    assert sp_poly2.contains_point(inside_xyz3)

    inside_res = list(int_poly.inside)
    for itr in range(0, len(inside_res)):
        print("Should be True ,True ,True : ",
              int_poly.contains_point(inside_res[itr]),
              sp_poly1.contains_point(inside_res[itr]),
              sp_poly2.contains_point(inside_res[itr]))
        assert int_poly.contains_point(inside_res[itr])
        assert sp_poly1.contains_point(inside_res[itr])
        assert sp_poly2.contains_point(inside_res[itr])
コード例 #4
0
ファイル: prot_analysis.py プロジェクト: dgound/f-distance
def analyze_protein(protein):
    prot = protein[0]
    chain = protein[1]
    print("Downloading {}{}.".format(prot, chain))

    cmd = "wget https://files.rcsb.org/download/{}.pdb".format(prot)
    proc = Popen(shlex.split(cmd), stdout=DEVNULL, stderr=STDOUT)
    proc.communicate()

    print("Extracting coordinates.")
    cmd = "./pdb_to_xyz.R {}.pdb --chain-id={} -o {}.txt".format(
        prot, chain, prot)
    proc = Popen(shlex.split(cmd), stdout=DEVNULL, stderr=STDOUT)
    proc.communicate()

    print("Removing pdb file.")
    proc = Popen(["rm", "{}.pdb".format(prot)], stdout=DEVNULL, stderr=STDOUT)
    proc.communicate()

    print("Analyzing protein")

    for proj in projections:
        cmd = "./polynomial_invariant {}.txt --names-db=internal --arrow --nb-projections={} --output-diagram={}{}_gl_{}.txt".format(
            prot, proj, prot, chain, proj)
        proc = Popen(shlex.split(cmd), stdout=DEVNULL, stderr=STDOUT)
        proc.communicate()

        name = "{}{}_gl_{}.txt".format(prot, chain, proj)
        origins, origin_types = [], []
        file = open(name, "r")
        next(file)
        me = 0
        checked = []
        vertex_to_index_list = dict()
        edges_to_add = []
        for l in file:
            line = l.strip('\n').split('\t')
            if line[3] != 'UNKNOWN':
                if '*' not in line[3]:
                    origin_types.append(line[3])
                    origins.append(
                        [float(line[0]),
                         float(line[1]),
                         float(line[2])])
                    if line[3] not in checked:
                        vertex_to_index_list[repr(line[3])] = me
                        me += 1

        origins = numpy.array(origins)
        voro = SphericalVoronoi(origins)
        voro.sort_vertices_of_regions()
        for i in range(len(voro.regions)):
            for j in range(i + 1, len(voro.regions)):
                intersect = list(set(voro.regions[i]) & set(voro.regions[j]))
                if intersect:
                    permissable = set(
                        [1, len(voro.regions[i]),
                         len(voro.regions[j])])
                    index_A = [voro.regions[i].index(x) for x in intersect]
                    diff_A = [
                        abs(j - i) for i, j in zip(index_A[:-1], index_A[1:])
                    ]
                    index_B = [voro.regions[j].index(x) for x in intersect]
                    diff_B = [
                        abs(j - i) for i, j in zip(index_B[:-1], index_B[1:])
                    ]
                    # print ("intersect",intersect,"voro[i]",voro.regions[i],"voro[j]",voro.regions[j])
                    # print ("index_A",index_A,"diff_A",diff_A,"index_B",index_B,"diff_B",diff_B)
                    # print ("perm_A",permissable & set(diff_A),"perm_B", permissable & set(diff_B))
                    if permissable & set(diff_A) and permissable & set(diff_B):
                        for k in range(int(len(intersect) / 2)):
                            edges_to_add.append(
                                (vertex_to_index_list[repr(origin_types[i])],
                                 vertex_to_index_list[repr(origin_types[j])]))


# Comment lines 155 - 165 and uncomment lines 169-170 to go to previous version.

# for k in range(int(len(intersect)/2)):
#     edges_to_add.append((vertex_to_index_list[repr(origin_types[i])],vertex_to_index_list[repr(origin_types[j])]))

# print ("len",len(voro.vertices))
        print("Creating graph.")

        g = igraph.Graph(len(origin_types), directed=False)

        origin_types = [
            x.split("|")[0].strip('m').strip('s') for x in origin_types
        ]
        g.vs["label"] = [x for x in origin_types]
        g.add_edges(edges_to_add)
        all_connections = []
        for edge in g.es:
            src = g.vs[edge.source]['label']
            tgt = g.vs[edge.target]['label']
            if (src == '3_1' and tgt != '3_1'):
                all_connections.append((src, tgt))
            elif (src != '3_1' and tgt == '3_1'):
                all_connections.append((tgt, src))

        proj_errors = 0
        error_pairs = []
        for pair in all_connections:

            if theoretical_values[pair[0]][pair[1]] != 1:
                proj_errors += 1
                error_pairs.append(pair)
        try:
            errors = round(proj_errors / len(all_connections), 4)
        except ZeroDivisionError:
            errors = 'NaN'

        edges_between = []
        for edge in g.es:
            src = g.vs[edge.source]['label']
            tgt = g.vs[edge.target]['label']
            if (src == '3_1' and tgt == '2_1'):
                edges_between.append((src, tgt))
            elif (src == '2_1' and tgt == '3_1'):
                edges_between.append((tgt, src))

        if len(edges_between) > 0:
            try:
                interface = round(len(edges_between) / len(all_connections), 4)
            except ZeroDivisionError:
                interface = 'NaN'
        else:
            interface = 'NaN'

        area_31, area_21 = [], []
        all_area_31, all_area_21 = [], []

        # voro_areas = voro.calculate_areas()

        print("voro_areas: ", voro_areas)
        for i in range(len(voro.regions)):
            voronoi_cell = numpy.asarray(
                [list(voro.vertices[x]) for x in voro.regions[i]])
            if origin_types[i] == '3_1':
                sph_pol = SphericalPolygon(voronoi_cell)
                area_31.append(sph_pol.area())
            elif origin_types[i] == '2_1':
                sph_pol = SphericalPolygon(voronoi_cell)

                area_21.append(sph_pol.area())
        all_area_31 = numpy.sum(area_31)
        all_area_21 = numpy.sum(area_21)

        all_graphs.append({
            'n': str(proj),
            'Error': errors,
            'Interface': interface,
            'Protein': prot + chain,
            'Spectrum': len(set(origin_types)),
            'Error Pairs': set(error_pairs),
            'Full Spectrum': set(origin_types),
            'Area  3_1': all_area_31,
            'Area 2_1': all_area_21,
            'Area 2_1/3_1': all_area_21 / all_area_31
        })
コード例 #5
0
ファイル: skyimage.py プロジェクト: STScI-JWST/jwst
class SkyImage:
    """
    Container that holds information about properties of a *single*
    image such as:

    * image data;
    * WCS of the chip image;
    * bounding spherical polygon;
    * id;
    * pixel area;
    * sky background value;
    * sky statistics parameters;
    * mask associated image data indicating "good" (1) data.

    """


    def __init__(self, image, wcs_fwd, wcs_inv, pix_area=1.0, convf=1.0,
                 mask=None, id=None, skystat=None, stepsize=None, meta=None):
        """ Initializes the SkyImage object.

        Parameters
        ----------
        image : numpy.ndarray
            A 2D array of image data.

        wcs_fwd : function
            "forward" pixel-to-world transformation function.

        wcs_inv : function
            "inverse" world-to-pixel transformation function.

        pix_area : float, optional
            Average pixel's sky area.

        convf : float, optional
            Conversion factor that when multiplied to `image` data converts
            the data to "uniform" (across multiple images) surface
            brightness units.

            .. note::

              The functionality to support this conversion is not yet
              implemented and at this moment `convf` is ignored.

        mask : numpy.ndarray
            A 2D array that indicates
            what pixels in the input `image` should be used for sky
            computations (``1``) and which pixels should **not** be used
            for sky computations (``0``).

        id : anything
            The value of this parameter is simple stored within the `SkyImage`
            object. While it can be of any type, it is prefereble that `id` be
            of a type with nice string representation.

        skystat : callable, None, optional
            A callable object that takes a either a 2D image (2D
            `numpy.ndarray`) or a list of pixel values (a Nx1 array) and
            returns a tuple of two values: some statistics (e.g., mean,
            median, etc.) and number of pixels/values from the input image
            used in computing that statistics.

            When `skystat` is not set, `SkyImage` will use
            :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object
            to perform sky statistics on image data.

        stepsize : int, None, optional
            Spacing between vertices of the image's bounding polygon. Default
            value of `None` creates bounding polygons with four vertices
            corresponding to the corners of the image.

        meta : dict, None, optional
            A dictionary of various items to be stored within the `SkyImage`
            object.

        """
        self.image = image
        self.convf = convf
        self.meta = meta
        self._id = id
        self._pix_area = pix_area

        # WCS
        self.wcs_fwd = wcs_fwd
        self.wcs_inv = wcs_inv

        # initial sky value:
        self._sky = 0.0
        self._sky_is_valid = False

        # check that mask has the same shape as image:
        if mask is None:
            self.mask = None

        else:
            if image is None:
                raise ValueError("'mask' must be None when 'image' is None")

            self.mask = np.asanyarray(mask, dtype=np.bool)

            if self.mask.shape != image.shape:
                raise ValueError("'mask' must have the same shape as 'image'.")

        # create spherical polygon bounding the image
        if image is None or wcs_fwd is None or wcs_inv is None:
            self._radec = [(np.array([]), np.array([]))]
            self._polygon = SphericalPolygon([])
            self._poly_area = 0.0

        else:
            self.calc_bounding_polygon(stepsize)

        # set sky statistics function (NOTE: it must return statistics and
        # the number of pixels used after clipping)
        if skystat is None:
            self.set_builtin_skystat()
        else:
            self.skystat = skystat

    @property
    def id(self):
        """ Set or get `SkyImage`'s `id`.

        While `id` can be of any type, it is prefereble that `id` be
        of a type with nice string representation.

        """
        return self._id

    @id.setter
    def id(self, id):
        self._id = id

    @property
    def pix_area(self):
        """ Set or get mean pixel area.
        """
        return self._pix_area

    @pix_area.setter
    def pix_area(self, pix_area):
        self._pix_area = pix_area

    @property
    def poly_area(self):
        """ Get bounding polygon area in srad units.
        """
        return self._poly_area

    @property
    def sky(self):
        """ Sky background value. See `calc_sky` for more details.
        """
        return self._sky

    @sky.setter
    def sky(self, sky):
        self._sky = sky


    @property
    def is_sky_valid(self):
        """
        Indicates whether sky value was successfully computed.
        Must be set externally.
        """
        return self._sky_is_valid

    @is_sky_valid.setter
    def is_sky_valid(self, valid):
        self._sky_is_valid = valid

    @property
    def radec(self):
        """
        Get RA and DEC of the verteces of the bounding polygon as a
        `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1.
        """
        return self._radec

    @property
    def polygon(self):
        """ Get image's bounding polygon.
        """
        return self._polygon

    def intersection(self, skyimage):
        """
        Compute intersection of this `SkyImage` object and another
        `SkyImage`, `SkyGroup`, or
        :py:class:`~spherical_geometry.polygon.SphericalPolygon`
        object.

        Parameters
        ----------
        skyimage : SkyImage, SkyGroup, SphericalPolygon
            Another object that should be intersected with this `SkyImage`.

        Returns
        -------
        polygon : SphericalPolygon
            A :py:class:`~spherical_geometry.polygon.SphericalPolygon` that is
            the intersection of this `SkyImage` and `skyimage`.

        """
        if isinstance(skyimage, (SkyImage, SkyGroup)):
            return self._polygon.intersection(skyimage.polygon)
        else:
            return self._polygon.intersection(skyimage)

    def calc_bounding_polygon(self, stepsize=None):
        """ Compute image's bounding polygon.

        Parameters
        ----------
        stepsize : int, None, optional
            Indicates the maximum separation between two adjacent vertices
            of the bounding polygon along each side of the image. Corners
            of the image are included automatically. If `stepsize` is `None`,
            bounding polygon will contain only vertices of the image.

        """
        ny, nx = self.image.shape

        if stepsize is None:
            nintx = 2
            ninty = 2
        else:
            nintx = max(2, int(np.ceil((nx + 1.0) / stepsize)))
            ninty = max(2, int(np.ceil((ny + 1.0) / stepsize)))

        xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float)
        ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1]
        nptx = xs.size
        npty = ys.size

        npts = 2 * (nptx + npty)

        borderx = np.empty((npts + 1,), dtype=np.float)
        bordery = np.empty((npts + 1,), dtype=np.float)

        # "bottom" points:
        borderx[:nptx] = xs
        bordery[:nptx] = -0.5
        # "right"
        sl = np.s_[nptx:nptx + npty]
        borderx[sl] = nx - 0.5
        bordery[sl] = ys
        # "top"
        sl = np.s_[nptx + npty:2 * nptx + npty]
        borderx[sl] = xs[::-1]
        bordery[sl] = ny - 0.5
        # "left"
        sl = np.s_[2 * nptx + npty:-1]
        borderx[sl] = -0.5
        bordery[sl] = ys[::-1]

        # close polygon:
        borderx[-1] = borderx[0]
        bordery[-1] = bordery[0]

        ra, dec = self.wcs_fwd(borderx, bordery, with_bounding_box=False)
        # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or
        #       dec[0] != dec[-1] (even though we close the polygon in the
        #       previous two lines). Then SphericalPolygon fails because
        #       points are not closed. Threfore we force it to be closed:
        ra[-1] = ra[0]
        dec[-1] = dec[0]

        self._radec = [(ra, dec)]
        self._polygon = SphericalPolygon.from_radec(ra, dec)
        self._poly_area = np.fabs(self._polygon.area())

    @property
    def skystat(self):
        """ Stores/retrieves a callable object that takes a either a 2D image
        (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and
        returns a tuple of two values: some statistics
        (e.g., mean, median, etc.) and number of pixels/values from the input
        image used in computing that statistics.

        When `skystat` is not set, `SkyImage` will use
        :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object
        to perform sky statistics on image data.

        """
        return self._skystat

    @skystat.setter
    def skystat(self, skystat):
        self._skystat = skystat

    def set_builtin_skystat(self, skystat='median', lower=None, upper=None,
                            nclip=5, lsigma=4.0, usigma=4.0, binwidth=0.1):
        """
        Replace already set `skystat` with a "built-in" version of a
        statistics callable object used to measure sky background.

        See :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` for the
        parameter description.

        """
        self._skystat = SkyStats(
            skystat=skystat,
            lower=lower,
            upper=upper,
            nclip=nclip,
            lsig=lsigma,
            usig=usigma,
            binwidth=binwidth
        )

    # TODO: due to a bug in the sphere package, see
    #       https://github.com/spacetelescope/sphere/issues/74
    #       intersections with polygons formed as union does not work.
    #       For this reason I re-implement 'calc_sky' below with
    #       a workaround for the bug.
    #       The original implementation (now called ``_calc_sky_orig``
    #       should replace current 'calc_sky' once the bug is fixed.
    #
    def calc_sky(self, overlap=None, delta=True):
        """
        Compute sky background value.

        Parameters
        ----------
        overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \
None, optional
            Another `SkyImage`, `SkyGroup`,
            :py:class:`spherical_geometry.polygons.SphericalPolygon`, or
            a list of tuples of (RA, DEC) of vertices of a spherical
            polygon. This parameter is used to indicate that sky statistics
            should computed only in the region of intersection of *this*
            image with the polygon indicated by `overlap`. When `overlap` is
            `None`, sky statistics will be computed over the entire image.

        delta : bool, optional
            Should this function return absolute sky value or the difference
            between the computed value and the value of the sky stored in the
            `sky` property.

        Returns
        -------
        skyval : float, None
            Computed sky value (absolute or relative to the `sky` attribute).
            If there are no valid data to perform this computations (e.g.,
            because this image does not overlap with the image indicated by
            `overlap`), `skyval` will be set to `None`.

        npix : int
            Number of pixels used to compute sky statistics.

        polyarea : float
            Area (in srad) of the polygon that bounds data used to compute
            sky statistics.

        """
        if overlap is None:

            if self.mask is None:
                data = self.image
            else:
                data = self.image[self.mask]

            polyarea = self.poly_area

        else:
            fill_mask = np.zeros(self.image.shape, dtype=bool)

            if isinstance(overlap, SkyImage):
                intersection = self.intersection(overlap)
                polyarea = np.fabs(intersection.area())
                radec = list(intersection.to_radec())

            elif isinstance(overlap, SkyGroup):
                radec = []
                polyarea = 0.0
                for im in overlap:
                    intersection = self.intersection(im)
                    polyarea1 = np.fabs(intersection.area())
                    if polyarea1 == 0.0:
                        continue
                    polyarea += polyarea1
                    radec += list(intersection.to_radec())

            elif isinstance(overlap, SphericalPolygon):
                radec = []
                polyarea = 0.0
                for p in overlap._polygons:
                    intersection = self.intersection(SphericalPolygon([p]))
                    polyarea1 = np.fabs(intersection.area())
                    if polyarea1 == 0.0:
                        continue
                    polyarea += polyarea1
                    radec += list(intersection.to_radec())

            else: # assume a list of (ra, dec) tuples:
                radec = []
                polyarea = 0.0
                for r, d in overlap:
                    poly = SphericalPolygon.from_radec(r, d)
                    polyarea1 = np.fabs(poly.area())
                    if polyarea1 == 0.0 or len(r) < 4:
                        continue
                    polyarea += polyarea1
                    radec.append(self.intersection(poly).to_radec())

            if polyarea == 0.0:
                return (None, 0, 0.0)

            for ra, dec in radec:
                if len(ra) < 4:
                    continue

                # set pixels in 'fill_mask' that are inside a polygon to True:
                x, y = self.wcs_inv(ra, dec)
                poly_vert = list(zip(*[x, y]))

                polygon = region.Polygon(True, poly_vert)
                fill_mask = polygon.scan(fill_mask)

            if self.mask is not None:
                fill_mask &= self.mask

            data = self.image[fill_mask]

            if data.size < 1:
                return (None, 0, 0.0)

        # Calculate sky
        try:

            skyval, npix = self._skystat(data)

        except ValueError:

            return (None, 0, 0.0)

        if delta:
            skyval -= self._sky

        return skyval, npix, polyarea

    def _calc_sky_orig(self, overlap=None, delta=True):
        """
        Compute sky background value.

        Parameters
        ----------
        overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \
None, optional
            Another `SkyImage`, `SkyGroup`,
            :py:class:`spherical_geometry.polygons.SphericalPolygon`, or
            a list of tuples of (RA, DEC) of vertices of a spherical
            polygon. This parameter is used to indicate that sky statistics
            should computed only in the region of intersection of *this*
            image with the polygon indicated by `overlap`. When `overlap` is
            `None`, sky statistics will be computed over the entire image.

        delta : bool, optional
            Should this function return absolute sky value or the difference
            between the computed value and the value of the sky stored in the
            `sky` property.

        Returns
        -------
        skyval : float, None
            Computed sky value (absolute or relative to the `sky` attribute).
            If there are no valid data to perform this computations (e.g.,
            because this image does not overlap with the image indicated by
            `overlap`), `skyval` will be set to `None`.

        npix : int
            Number of pixels used to compute sky statistics.

        polyarea : float
            Area (in srad) of the polygon that bounds data used to compute
            sky statistics.

        """

        if overlap is None:

            if self.mask is None:
                data = self.image
            else:
                data = self.image[self.mask]

            polyarea = self.poly_area

        else:
            fill_mask = np.zeros(self.image.shape, dtype=bool)

            if isinstance(overlap, (SkyImage, SkyGroup, SphericalPolygon)):
                intersection = self.intersection(overlap)
                polyarea = np.fabs(intersection.area())
                radec = intersection.to_radec()

            else: # assume a list of (ra, dec) tuples:
                radec = []
                polyarea = 0.0
                for r, d in overlap:
                    poly = SphericalPolygon.from_radec(r, d)
                    polyarea1 = np.fabs(poly.area())
                    if polyarea1 == 0.0 or len(r) < 4:
                        continue
                    polyarea += polyarea1
                    radec.append(self.intersection(poly).to_radec())

            if polyarea == 0.0:
                return (None, 0, 0.0)

            for ra, dec in radec:
                if len(ra) < 4:
                    continue

                # set pixels in 'fill_mask' that are inside a polygon to True:
                x, y = self.wcs_inv(ra, dec)
                poly_vert = list(zip(*[x, y]))

                polygon = region.Polygon(True, poly_vert)
                fill_mask = polygon.scan(fill_mask)

            if self.mask is not None:
                fill_mask &= self.mask

            data = self.image[fill_mask]

            if data.size < 1:
                return (None, 0, 0.0)

        # Calculate sky
        try:

            skyval, npix = self._skystat(data)

        except ValueError:

            return (None, 0, 0.0)

        if delta:
            skyval -= self._sky

        return skyval, npix, polyarea

    def copy(self):
        """
        Return a shallow copy of the `SkyImage` object.
        """
        si = SkyImage(
            image=None,
            wcs_fwd=self.wcs_fwd,
            wcs_inv=self.wcs_inv,
            pix_area=self.pix_area,
            convf=self.convf,
            mask=None,
            id=self.id,
            stepsize=None,
            meta=self.meta
        )
        si.image = self.image
        si.mask = self.mask
        si._radec = self._radec
        si._polygon = self._polygon
        si._poly_area = self._poly_area
        si.sky = self.sky
        return si