コード例 #1
0
        raise NPKError("Axis %d should be complex" % axis, data=data)


#---------------------------------------------------------------------------
def ft_sim(data):
    """performs the fourier transform of a data-set acquired on a Bruker in
    simultaneous mode
    Processing is performed only along the F2 (F3) axis if in 2D (3D)

    (Bruker QSIM mode)"""
    todo = data.dim
    data.revf().fft(axis=todo)
    return data


NPKData_plugin("ft_sim", ft_sim)


#---------------------------------------------------------------------------
def ft_seq(data):
    """performs the fourier transform of a data-set acquired on a Bruker in simultaneous mode
    Processing is performed only along the F2 (F3) axis if in 2D (3D)

    (Bruker QSIM mode)"""
    todo = data.dim
    data.revf().rfft(axis=todo)
    return data


NPKData_plugin("ft_seq", ft_seq)
コード例 #2
0
ファイル: PALMA.py プロジェクト: LauraDuciel/plasmodesma
                        Binv,
                        y,
                        eta,
                        nbiter=nbiter,
                        lamda=lamda,
                        prec=precision,
                        full_output=full_output)
        Ok = not np.isnan(
            x.sum())  #  the current algo sometimes produces NaN values
        if not Ok:
            NaN_found += 1
            uncertainty *= 1.4
    npkd.set_buffer(x[:, 0])
    npkd.noise = eta
    if full_output:
        npkd.full_output = c
    if NaN_found > 0:
        print("%d NaN conditions encountered during PALMA processing" %
              NaN_found)
    return npkd


def test(npkd):
    print('Not implemented')


NPKData_plugin("palma", palma)
NPKData_plugin("do_palma", do_palma)
NPKData_plugin("prepare_palma", prepare_palma)
NPKData_plugin("calibdosy", dcalibdosy)
コード例 #3
0
    if npkd.dim == 1:
        z = denoise1D(npkd.get_buffer(),
                      nsigma * npkd.get_buffer().std(),
                      wavelet=wavelet)
    elif npkd.dim == 2:
        z = denoise2D(npkd.get_buffer(),
                      nsigma * npkd.get_buffer().std(),
                      wavelet=wavelet)
    else:
        raise NPKError("not implemented")
    npkd.set_buffer(z)
    return npkd


if ok:
    NPKData_plugin("wavelet", wavelet)


class WaveLetTest(unittest.TestCase):
    """ - Testing Wavelet plugin- """
    def setUp(self):
        self.verbose = 1  # verbose > 0 switches messages on

    def announce(self):
        if self.verbose > 0:
            print("\n========", self.shortDescription(), '===============')

    def test_wave(self):
        """ - testing wavelet - """
        from spike.util.signal_tools import findnoiselevel
        from spike.NPKData import NPKData
コード例 #4
0
ファイル: bokeh_display.py プロジェクト: spike-project/spike
        if xlabel == "_def_":
            xlabel = npkd.axis2.currentunit
        if ylabel == "_def_":
            ylabel = npkd.axis1.currentunit
        if xlabel is not None:
            dbk['x_axis_label'] = xlabel
        if ylabel is not None:
            dbk['y_axis_label'] = ylabel
        dbk.update(dbkdic)
        xs, ys, col = get_contour_data(ax)
        if redraw:
            npkd.bokeh_fig['xs'] = xs
            npkd.bokeh_fig['ys'] = ys
        else:
            p = bk.figure(**dbk)
            xs, ys, col = get_contour_data(ax)
            dfig = {}
            dfig['xs'] = xs
            dfig['ys'] = ys
            dfig['color'] = col
            dfig.update(dfigdic)
            p.multi_line(**dfig)
            npkd.bokeh_fig = dfig
            npkd.bokeh_plot = p
        del fig, ax
    if show:
        bk.show(npkd.bokeh_plot)
        return npkd

NPKData_plugin("bokeh", bokeh_display)
コード例 #5
0
ファイル: Peaks.py プロジェクト: bopopescu/spike
        d.peaks.report(NbMaxPeaks=10)

    def test_center2d(self):
        M = np.zeros((20, 20))
        # add one peak at (F1,F2) 5.3, 7.9 with widthes (5.0,1.3)
        for y in range(1, 10):
            for x in range(6, 11):
                #                 yo, x0 intens, widthy, widthx
                M[y, x] = center2d(np.array([y, x]), 5.3, 7.9, 20.0, 5.0, 1.3)
        #print (M[1:10,6:11])
        self.assertAlmostEqual(M[2, 7], 5.87777515)
        d = _NPKData(buffer=np.maximum(M, 0.0))
        d.peaks = Peak2DList(source=d)
        # self, Id, label, intens, posF1, posF2
        d.peaks.append(Peak2D(0, "0", 18.0, 5, 8))
        d.centroid(npoints_F1=5)
        self.assertAlmostEqual(d.peaks[0].posF1, 5.3)
        self.assertAlmostEqual(d.peaks[0].posF2, 7.9)
        self.assertAlmostEqual(d.peaks[0].intens, 20.0)
        self.assertAlmostEqual(d.peaks[0].widthF1, 5.0 * np.sqrt(2))
        self.assertAlmostEqual(d.peaks[0].widthF2, 1.3 * np.sqrt(2))


NPKData_plugin("pp", peakpick)
NPKData_plugin("peakpick", peakpick)
NPKData_plugin("centroid", centroid)
NPKData_plugin("report_peaks", report_peaks)
NPKData_plugin("display_peaks", display_peaks)
NPKData_plugin("peaks2d", peaks2d)
NPKData_plugin("pk2pandas", pk2pandas)
コード例 #6
0
                                                    window_size)
    else:
        raise NPKError("a faire")
    return npkd


########################################################################
def sg2D(npkd, window_size, order, deriv=None):
    """applies a 2D Savitzky-Golay of order filter to data
    window_size : int
        the length of the square window. Must be an odd integer number.
    order : int
        the order of the polynomial used in the filtering.
        Must be less than `window_size` - 1.
    deriv: None, 'col', or 'row'.   'both' mode does not work.
        the direction of the derivative to compute (default = None means only smoothing)
    can be applied to a 2D only.
    """
    import spike.Algo.savitzky_golay as sgm
    npkd.check2D()
    npkd.set_buffer(
        sgm.savitzky_golay2D(npkd.get_buffer(),
                             window_size,
                             order,
                             derivative=deriv))
    return npkd


NPKData_plugin("sg", sg)
NPKData_plugin("sg2D", sg2D)
コード例 #7
0
ファイル: sane.py プロジェクト: spike-project/spike
             for the second pass a lower rank can be used. 
    
    """
    if npkd.dim == 1:
        if npkd.axis1.itype == 0:   # real
            buff = as_cpx(_base_ifft(_base_rfft(npkd.buffer)))       # real case, go to analytical signal
        else:   #complex
            buff = npkd.get_buffer()                       # complex case, makes complex
        sane_result = sane(buff, rank, orda=orda, trick=trick, iterations=iterations) # performs denoising
        if npkd.axis1.itype == 0:   # real
            buff = _base_irfft(_base_fft(as_float(sane_result)))      # real case, comes back to real
            npkd.set_buffer(buff)
        else:
            npkd.buffer = as_float(sane_result)             # complex case, makes real
    elif npkd.dim == 2:
        todo = npkd.test_axis(axis)
        if todo == 2:
            for i in xrange(npkd.size1):
                r = npkd.row(i).sane(rank=rank, orda=orda, iterations=iterations)
                npkd.set_row(i,r)
        elif todo == 1:
            for i in xrange(npkd.size2):
                r = npkd.col(i).sane(rank=rank, orda=orda, iterations=iterations)
                npkd.set_col(i,r)
    elif npkd.dim == 3:
        raise Exception("not implemented yet")
    return npkd


NPKData_plugin("sane", sane_plugin)
コード例 #8
0
ファイル: pg_sane.py プロジェクト: spike-project/spike
        # here, noise level is half of the largest amplitude.
        np.random.seed(12345)
        # noisy data
        nfid = fid0 + NOISE * np.random.randn(
            len(fid0)) + 1j * NOISE * np.random.randn(len(fid0))
        # generate sampling
        RATIO = 1. / 8
        sampling = gene_sampling(RATIO)
        # prepare
        f = NPKData(buffer=nfid[sampling])
        f.axis1.sampling = sampling
        # do it
        t0 = time.time()
        g = f.copy().pg_sane(iterations=20, rank=15)
        elaps = time.time() - t0
        SNR = -20 * np.log10(
            np.linalg.norm(g.get_buffer() - fid0) / np.linalg.norm(fid0))
        print(
            "test_NUS_sampling2: elaps %.2f sec  SNR: %.1f dB should be larger than 30dB"
            % (elaps, SNR))
        self.assertTrue(SNR > 30.0)
        ax1 = plt.subplot(211)
        f.copy().apod_sin().zf(2).fft().display(
            title='spectrum original data with sampling noise', figure=ax1)
        ax2 = plt.subplot(212)
        g.copy().apod_sin().zf(2).fft().display(
            title='spectrum after pg_sane cleaning', figure=ax2)


NPKData_plugin("pg_sane", pg_sane)
コード例 #9
0
ファイル: fastclean.py プロジェクト: spike-project/spike
    """
    set to zeros all points below nsigma times the noise level
    This allows the corresponding data-set, once stored to file, to be considerably more compressive.
    
    nsigma: float
        the ratio used, typically 1.0 to 3.0 (higher compression)
    nbseg: int
        the number of segments used for noise evaluation, see util.signal_tools.findnoiselevel
    axis: int
        the axis on which the noise is evaluated, default is fastest varying dimension
    """
    todo = npkd.test_axis(axis)
    if npkd.dim == 1:
        noise = findnoiselevel(npkd.get_buffer(), nbseg=nbseg)
        npkd.zeroing(nsigma * noise)
    elif npkd.dim == 2:
        if todo == 2:
            for i in xrange(npkd.size1):
                npkd.set_row(i,
                             npkd.row(i).fastclean(nsigma=nsigma, nbseg=nbseg))
        elif todo == 1:
            for i in xrange(npkd.size2):
                npkd.set_col(i,
                             npkd.col(i).fastclean(nsigma=nsigma, nbseg=nbseg))
    else:
        raise NPKError("a faire")
    return npkd


NPKData_plugin("fastclean", fastclean)
コード例 #10
0
def lpext(npkd, final_size, lprank=10, algotype="burg"):
    """
    extends a 1D FID or 2D FID in F1 up to final_size, using lprank coefficients, and algotype mode
    """
    if npkd.dim == 1:
        return lpext1d(npkd, final_size, lprank=10, algotype="burg")
    elif npkd.dim == 2:
        return lpext2d(npkd, final_size, lprank=10, algotype="burg")
    else:
        raise Exception("Not implemented yet")


class LinpredicTests(unittest.TestCase):
    def setUp(self):
        self.verbose = 1  # verbose >0 switches on messages

    def announce(self):
        if self.verbose > 0:
            print(self.shortDescription())

    def test_log(self):
        """testing log"""
        import math
        self.announce()
        x = 0.0
        y = math.log(1.0)
        self.assertAlmostEqual(x, y)


NPKData_plugin("lpext", lpext)
コード例 #11
0
ファイル: PhaseMS.py プロジェクト: spike-project/spike
    """computes a new set of parameters whil moving pivot from pvbef to pvaft"""
# p (pbef) goes from 0 to 1 so, for a buffer of size, pivot position is p*size
# in position x, phase correction is prop to (x/size - p) 
# ph = P0 + (x/size - p) P1 +  (x/size - p)² P2 
# ph = P0 + x/size P1 - p P1  + (x/size)² P2 +  p² P2 - 2 x p/size P2
# ph = P0 - p P1 +  p² P2   - 2 x p/size P2 + x/size P1     + (x/size)² P2
# and with a new pivot paft:
# ph = P0' - paft P1' +  paft² P2'   - 2 x paft/size P2' + x/size P1'     + (x/size)² P2'
#      P0' - paft P1' +  paft² P2'   + (x/size)(- 2 paft P2' +  P1')     + (x/size)² P2'
# for the phase to be equal with paft we need that cst, x and x² terms to be equal, which means
# so
# => P2' = P2
# - 2 paft P2' + P1' = - 2 p P2 + P1
# => P1'  =  P1 - 2 p P2 + 2 paft P2
#         =  P1 + 2(paft-p)P2
# P0' - paft P1' +  paft² P2'  = P0 - p P1 +  p² P2 
# => P0' =  P0 - p P1 +  p² P2 + paft P1' - paft² P2'
#        =  P0 - p P1 +  (p²-paft²) P2 + paft P1'    
    p2p = p2
    p1p = p1 + 2*(pvaft-pvbef)*p2
    p0p = 360*(p0/360 - pvbef*p1 + (pvbef**2 - pvaft**2)*p2 + pvaft*p1p)
    # then bring ph0 in [-180, 180]
    while p0p > 180:
        p0p -= 360
    while p0p < -180:
        p0p += 360
    
    return p0p, p1p, p2p, pvaft
# NPKData_plugin("phase", phase)  # supercede the regular phase correction code - not compatible with Test suite !
NPKData_plugin("phaseMS", phase)
コード例 #12
0
ファイル: test.py プロジェクト: spike-project/spike
#!/usr/bin/env python
# encoding: utf-8
"""Test procedure for plugins

"""

from __future__ import print_function
from spike.NPKData import NPKData_plugin


def fake(dd, title):
    "fake method"
    dd.test_title = title
    return dd


NPKData_plugin("fake", fake)
コード例 #13
0
    pass
else:
    xrange = range


def rem_ridge(data):
    """
    This function removes a F1 ridge by evaluating a mean avalue over the last 10% data of each column of a 2D
    """
    data.check2D()
    deb = int(0.9 * data.size1)  # debut et fin de l'évaluation
    fin = data.size1
    r = data.row(deb)
    for i in xrange(deb + 1, fin):  # je calcule la moyenne
        r.add(data.row(i))
    r.mult(-1.0 / (fin - deb))
    for i in xrange(data.size1):
        data.set_row(i, data.row(i).add(r))
    return data  # et garde la syntaxe standard NPKData


NPKData_plugin("rem_ridge", rem_ridge)
"""
rem_ridge() injection 
now on (in this running version)

data.rem_ridge()

will realize a baseline ridge correction
    """
コード例 #14
0
ファイル: zoom3D.py プロジェクト: spike-project/spike
        cc = npkd.col(i)  # going column wise is probably faster ...
        d5[i - z2lo, :] = cc[
            z1lo:z1up +
            1]  # taking a slice out of a npkdata returns a np.array
    zmax = np.amax(d5)
    zmin = np.amin(d5)  # 0  - some data-set are negative
    xmin = zoom[2]
    xmax = zoom[3]
    ymin = zoom[0]
    ymax = zoom[1]
    mlab.figure(bgcolor=(1., 1., 1.), fgcolor=(0., 0., 0.))
    mlab.surf(d5,
              extent=[0, 1000, 0, 1000, 0, 1000],
              warp_scale='auto',
              colormap=colormap)
    ax = mlab.axes(x_axis_visibility=showaxes,
                   y_axis_visibility=showaxes,
                   z_axis_visibility=showaxes,
                   xlabel="F2 " + npkd.axis2.currentunit,
                   ylabel="F1 " + npkd.axis1.currentunit,
                   zlabel='Intensity',
                   ranges=[xmin, xmax, ymin, ymax, zmin, zmax],
                   nb_labels=5)
    ax.label_text_property.font_family = font
    ax.title_text_property.font_family = font
    ax.axes.font_factor = fontsize


if ok:
    NPKData_plugin("zoomwindow", zoom3D)
コード例 #15
0
ファイル: apmin.py プロジェクト: bopopescu/spike
                        P1step = -P1step
                    break
            P0min = P0minnext
            P1min = P1minnext
            if debug:
                dd = d.copy()
                P0, P1 = phase_pivot(dd, P0min, P1min, pivot)
                print("*** P0 P1 :", P0, P1)
                color_sequence = [
                    '#1f77b4', '#aec7e8', '#ff7f0e', '#ffbb78', '#2ca02c',
                    '#98df8a', '#d62728', '#ff9896', '#9467bd', '#c5b0d5',
                    '#8c564b', '#c49c94', '#e377c2', '#f7b6d2', '#7f7f7f',
                    '#c7c7c7', '#bcbd22', '#dbdb8d', '#17becf', '#9edae5'
                ]
                dd.display(new_fig=False,
                           label="%.0f %.0f" % (P0, P1),
                           color=color_sequence[neval % len(color_sequence)])
        P0step = P0step / 2.0
        P1step = P1step / 2.0
        if P0step < 5.0:
            bcorr = baselinecorr  # bcorr is expensive, so we make it only at the end if needed
            if debug: print('bcorr = True')
    (P0, P1) = phase_pivot(d, P0min, P1min, pivot)
    if debug:
        print("**FINAL** %.2f %.2f   in %d evaluations" % (P0, P1, neval))
    d.axis1.P0 = P0
    d.axis1.P1 = P1
    return d

NPKData_plugin("apmin", apmin)
コード例 #16
0
ファイル: FTMS_calib.py プロジェクト: spike-project/spike
    for mol, values in calib.items():
        mass, charge = values
        peptide = False
        try:
            nmass = iso.parse_peptide(mol).monoisotop(charge)
            peptide = True
        except:
            pass
        if not peptide:
            try:
                nmass = iso.parse_formula(mol).monoisotop(charge)
                peptide = False
            except:
                print('could not understand %s' % mol)
                continue
        if nmass < 10.0:
            continue
        if peptide and charge > 0:  # then add H+
            nmass += iso.parse_formula('H').monoisotop()
        diff.append(1E6 * abs(mass - nmass) / mass)
        calib[mol] = (nmass, charge)
    print('recalibrate   mean: %.3f ppm   max: %.3f ppm' %
          (sum(diff) / len(diff), max(diff)))
    return calib


# and plug the whole stuf into NPKData
NPKData_plugin("set_calib", set_calib)
NPKData_plugin("calib", calib)
NPKData_plugin("display_calib", display_calib)
コード例 #17
0
            simple 1D correction
        spline:
            a cubic spline correction
    both linear and spline use an additional list of pivot points 'xpoints' used to calculate the baseline
    if xpoints absent,  pivots are estimated automaticaly
    if xpoints is integer, it determines the number of computed pivots (defaut is 8 if xpoints is None)
    if xpoints is a list of integers, there will used as pivots

    if nsmooth >0, buffer is smoothed by moving average over 2*nsmooth+1 positions around pivots.
    if dataset is complex, the xpoints are computed on the modulus spectrum, unless modulus is False

    default is spline with automatic detection of 8 baseline points
    """
    if method == 'auto':
        return bcorr_auto(npkd)
    else:
        if xpoints is None or isinstance(xpoints, int):
            xpoints = autopoints(npkd, xpoints, modulus=modulus)
    if method == 'linear':
        return linear_interpolate(npkd, xpoints, nsmooth=nsmooth)
    elif method == 'spline':
        return spline_interpolate(npkd, xpoints, nsmooth=nsmooth)
    else:
        raise Exception("Wrong method in bcorr plugin")


NPKData_plugin("bcorr_lin", linear_interpolate)
NPKData_plugin("bcorr_spline", spline_interpolate)
NPKData_plugin("bcorr_auto", bcorr_auto)
NPKData_plugin("bcorr", bcorr)
コード例 #18
0
ファイル: diagonal_2DMS.py プロジェクト: spike-project/spike
#!/usr/bin/env python
# encoding: utf-8
"""computes diagonal of 2D-MS spectra

Created by DELSUC Marc-André on 2020-12-10.
"""
import numpy as np

from spike.NPKData import NPKData_plugin


def diagonal(self):
    """allows to extract the diagonal of a 2D FTMS spectrum"""
    self.check2D()
    ddiag = self.row(0)  # container
    diag = np.zeros(self.size2)  # data
    high = int(self.axis2.mztoi(self.axis1.lowmass))  # borders in index
    low = int(self.axis2.mztoi(self.axis1.highmass))
    i = np.arange(low, high)  # convert indices to mz
    z = self.axis2.itomz(i)
    iz = np.int_(np.round(self.axis1.mztoi(z)))
    jz = np.int_(np.round(self.axis2.mztoi(z)))
    diag[jz] = self[iz, jz]  # and copy
    ddiag.set_buffer(diag)
    return ddiag


NPKData_plugin("diagonal", diagonal)
コード例 #19
0
            integoff=0.3,
            integscale=0.5,
            color='red',
            label=False,
            labelxposition=1,
            labelyposition=None,
            regions=False,
            zoom=None,
            figure=None,
            curvedict=None,
            labeldict=None):
    npkd.integrals.display(integoff=integoff,
                           integscale=integscale,
                           color=color,
                           label=label,
                           labelxposition=labelxposition,
                           labelyposition=labelyposition,
                           regions=regions,
                           zoom=zoom,
                           figure=figure,
                           curvedict=curvedict,
                           labeldict=labeldict)
    return npkd


display.__doc__ = Integrals.display.__doc__

NPKData_plugin("integrate", integrate)
NPKData_plugin("integral_calibrate", calibrate)
NPKData_plugin("display_integral", display)
コード例 #20
0
                   (ih1 - inext1), (ih2 - inext2)),
                  file=file)
            #            print(here1, here2, here1_2, here2_2, inext1, ih1, inext2, ih2, file=F)
            here2_2 = next2
            here2 = (here2 + bsize2)
        here1_2 = next1
        here1 = (here1 + bsize1)

    return data


class BucketingTests(unittest.TestCase):
    def setUp(self):
        self.verbose = 1  # verbose >0 switches on messages

    def announce(self):
        if self.verbose > 0:
            print(self.shortDescription())

    def _test_log(self):
        """testing log"""
        import math
        self.announce()
        x = 0.0
        y = math.log(1.0)
        self.assertAlmostEqual(x, y)


NPKData_plugin("bucket1d", bucket1d)
NPKData_plugin("bucket2d", bucket2d)
コード例 #21
0
ファイル: Fitter.py プロジェクト: spike-project/spike
        # create 1D spectrum
        t = np.linspace(0,10,1000)
        y = np.zeros_like(t)
        A = (100,100,100)
        W = (100, 110, 115)
        TAU = (0.3, 1, 3)
        for a,w,tau in zip(A,W, TAU):
            y += a*np.cos(w*t)*np.exp(-t*tau)
        Y = np.fft.rfft(y).real
        Y -= Y[0]
        # load and peak pick
        d=spike.NPKData._NPKData(buffer=Y)
        d.pp(threshold=1000)
        # check
        self.assertEqual(list(d.peaks.pos) , [159.0, 175.0, 183.0])
        d.fit()
        if scipy.__version__ > '0.17.0':
            # first fit is not full because of constraints on widthes (third peak)
            self.assertAlmostEqual(d.peaks.chi2, 121.72613405, places=2)
        d.fit()
        self.assertAlmostEqual(d.peaks.chi2, 15.0445981291, places=2)    # second is complete
        # other possibility is centroid
        d.pp(threshold=1000)
        d.centroid()
        d.fit(zoom=(140,200))
        self.assertAlmostEqual(d.peaks.chi2, 12.4304236435, places=1)    # lower because of zoom.
        self.assertAlmostEqual( sum(list(d.peaks.pos)), 517.74817237246634, places=2)

NPKData_plugin("simulate", simulate)
NPKData_plugin("fit", fit)
NPKData_plugin("display_fit", display_fit)
コード例 #22
0
ファイル: gaussenh.py プロジェクト: spike-project/spike
Created by DELSUC Marc-André on February 2019
Copyright (c) 2019 IGBMC. All rights reserved.
"""
import numpy as np
from spike.NPKData import as_float, NPKData_plugin


#-------------------------------------------------------------------------------
def gaussenh(npkd, width, enhancement=2.0, axis=0):
    """
    apply an gaussian enhancement, width is in Hz
    enhancement is the strength of the effect
    multiplies by gauss(width) * exp(-enhancement*width)
    """
    todo = npkd.test_axis(axis)
    it = npkd.axes(todo).itype
    sw = npkd.axes(todo).specwidth
    size = npkd.axes(todo).size
    if it == 1:  # means complex
        size = size // 2
    baseax = width * np.arange(size) / sw
    e = np.exp(enhancement * baseax)
    e *= np.exp(-(baseax)**2)
    if it == 1:
        e = as_float((1 + 1.0j) * e)
    # check NPKData.py to see how apodisations are handled.
    return npkd.apod_apply(axis, e)


NPKData_plugin("gaussenh", gaussenh)