コード例 #1
0
ファイル: test_metrics.py プロジェクト: teristam/spikemetrics
def test_isi_violations():
    # 1. check value for fixed spike train parameters:

    train1 = simulated_spike_train(100, 10, 10)
    fpRate1, num_violations1 = isi_violations(train1, np.max(train1), 0.001)

    assert np.isclose(fpRate1, 0.4901480247, rtol=0, atol=1e-5)
    assert num_violations1 == 10

    # 2. check that the value doesn't depend on recording duration:

    train2 = simulated_spike_train(200, 10, 20)
    fpRate2, num_violations2 = isi_violations(train2, np.max(train2), 0.001)

    assert np.isclose(fpRate1, fpRate2, rtol=0, atol=1e-5)

    # 3. check that the value increases with the number of violations:

    train3 = simulated_spike_train(100, 10, 20)
    fpRate3, num_violations3 = isi_violations(train3, np.max(train3), 0.001)

    assert fpRate3 > fpRate1

    # 4. check that the value decreases with a longer violation window:

    fpRate4, num_violations4 = isi_violations(train1, np.max(train1), 0.002)

    assert fpRate4 < fpRate1

    # 5. check that the value decreases with firing rate:

    train4 = simulated_spike_train(100, 20, 10)
    fpRate5, num_violations5 = isi_violations(train4, np.max(train4), 0.001)

    assert fpRate5 < fpRate1
コード例 #2
0
ファイル: test_metrics.py プロジェクト: teristam/spikemetrics
def simulated_spike_times():
    max_time = 100

    trains = [simulated_spike_train(max_time, 10, 2),
              simulated_spike_train(max_time, 5, 4),
              simulated_spike_train(max_time, 5, 10)]

    labels = [np.ones((len(trains[i]),), dtype='int') * i for i in range(len(trains))]

    spike_times = np.concatenate(trains)
    spike_clusters = np.concatenate(labels)

    order = np.argsort(spike_times)

    spike_times = spike_times[order]
    spike_clusters = spike_clusters[order]

    return {'spike_times': spike_times, 'spike_clusters': spike_clusters}
コード例 #3
0
ファイル: test_metrics.py プロジェクト: teristam/spikemetrics
def test_firing_rate():
    # 1. check that the output value is correct:

    max_time = 100
    simulated_firing_rate = 10.0

    train = simulated_spike_train(max_time, simulated_firing_rate, 0)

    assert firing_rate(train, duration=max_time) == simulated_firing_rate

    # 2. check that widening the boundaries decreases the rate:

    assert firing_rate(train, duration=100) > firing_rate(train, duration=200)
コード例 #4
0
def test_presence_ratio(overall_duration, expected_value):

    spike_times = simulated_spike_train(100, 20, 0)

    assert presence_ratio(spike_times, 0, overall_duration) == expected_value