コード例 #1
0
def threshold_amplitude_cutoffs(sorting,
                                recording,
                                threshold,
                                threshold_sign,
                                recording_params=get_recording_params(),
                                amplitude_params=get_amplitude_params(),
                                feature_params=get_feature_params(),
                                save_as_property=True,
                                seed=AmplitudeCutoff.params['seed'],
                                verbose=AmplitudeCutoff.params['verbose']):
    """
    Computes and thresholds the amplitude cutoffs in the sorted dataset with the given sign and value.

    Parameters
    ----------
    sorting: SortingExtractor
        The sorting result to be evaluated.
    recording: RecordingExtractor
        The given recording extractor
    threshold: int or float
        The threshold for the given metric.
    threshold_sign: str
        If 'less', will threshold any metric less than the given threshold.
        If 'less_or_equal', will threshold any metric less than or equal to the given threshold.
        If 'greater', will threshold any metric greater than the given threshold.
        If 'greater_or_equal', will threshold any metric greater than or equal to the given threshold.
    amplitude_params: dict
        This dictionary should contain any subset of the following parameters:
            amp_method: str
                If 'absolute' (default), amplitudes are absolute amplitudes in uV are returned.
                If 'relative', amplitudes are returned as ratios between waveform amplitudes and template amplitudes.
            amp_peak: str
                If maximum channel has to be found among negative peaks ('neg'), positive ('pos') or both ('both' - default)
            amp_frames_before: int
                Frames before peak to compute amplitude.
            amp_frames_after: int
                Frames after peak to compute amplitude.
    recording_params: dict
        This dictionary should contain any subset of the following parameters:
            apply_filter: bool
                If True, recording is bandpass-filtered.
            freq_min: float
                High-pass frequency for optional filter (default 300 Hz).
            freq_max: float
                Low-pass frequency for optional filter (default 6000 Hz).
    feature_params: dict
        This dictionary should contain any subset of the following parameters:
            save_features_props: bool
                If true, it will save features in the sorting extractor.
            recompute_info: bool
                    If True, waveforms are recomputed
            max_spikes_per_unit: int
                The maximum number of spikes to extract per unit.
    save_as_property: bool
        If True, the metric is saved as sorting property
    seed: int
        Random seed for reproducibility
    verbose: bool
        If True, will be verbose in metric computation.
    Returns
    ----------
    threshold sorting extractor
    """
    rp_dict, ap_dict, fp_dict = update_param_dicts(
        recording_params=recording_params,
        amplitude_params=amplitude_params,
        feature_params=feature_params)

    md = MetricData(sorting=sorting,
                    sampling_frequency=recording.get_sampling_frequency(),
                    recording=recording,
                    apply_filter=rp_dict["apply_filter"],
                    freq_min=rp_dict["freq_min"],
                    freq_max=rp_dict["freq_max"],
                    unit_ids=None,
                    epoch_tuples=None,
                    epoch_names=None,
                    verbose=verbose)
    md.compute_amplitudes(
        amp_method=ap_dict["amp_method"],
        amp_peak=ap_dict["amp_peak"],
        amp_frames_before=ap_dict["amp_frames_before"],
        amp_frames_after=ap_dict["amp_frames_after"],
        max_spikes_per_unit=fp_dict["max_spikes_per_unit"],
        save_features_props=fp_dict['save_features_props'],
        recompute_info=fp_dict['recompute_info'],
        seed=seed,
    )
    ac = AmplitudeCutoff(metric_data=md)
    threshold_sorting = ac.threshold_metric(threshold, threshold_sign,
                                            save_as_property)
    return threshold_sorting
コード例 #2
0
def threshold_amplitude_cutoffs(
        sorting,
        recording,
        threshold,
        threshold_sign,
        **kwargs
):
    """
    Computes and thresholds the amplitude cutoffs in the sorted dataset with the given sign and value.

    Parameters
    ----------
    sorting: SortingExtractor
        The sorting result to be evaluated
    recording: RecordingExtractor
        The given recording extractor
    threshold: int or float
        The threshold for the given metric
    threshold_sign: str
        If 'less', will threshold any metric less than the given threshold
        If 'less_or_equal', will threshold any metric less than or equal to the given threshold
        If 'greater', will threshold any metric greater than the given threshold
        If 'greater_or_equal', will threshold any metric greater than or equal to the given threshold
    **kwargs: keyword arguments
        Keyword arguments among the following:
            method: str
                If 'absolute' (default), amplitudes are absolute amplitudes in uV are returned
                If 'relative', amplitudes are returned as ratios between waveform amplitudes and template amplitudes
            peak: str
                If maximum channel has to be found among negative peaks ('neg'), positive ('pos') or
                both ('both' - default)
            frames_before: int
                Frames before peak to compute amplitude
            frames_after: int
                Frames after peak to compute amplitude
            apply_filter: bool
                If True, recording is bandpass-filtered
            freq_min: float
                High-pass frequency for optional filter (default 300 Hz)
            freq_max: float
                Low-pass frequency for optional filter (default 6000 Hz)
            save_property_or_features: bool
                If true, it will save features in the sorting extractor
            recompute_info: bool
                    If True, waveforms are recomputed
            max_spikes_per_unit: int
                The maximum number of spikes to extract per unit

    Returns
    ----------
    threshold sorting extractor
    """
    params_dict = update_all_param_dicts_with_kwargs(kwargs)

    md = MetricData(sorting=sorting, sampling_frequency=recording.get_sampling_frequency(), recording=recording,
                    apply_filter=params_dict["apply_filter"], freq_min=params_dict["freq_min"],
                    duration_in_frames=None, freq_max=params_dict["freq_max"], unit_ids=None, verbose=params_dict['verbose'])
    md.compute_amplitudes(**kwargs)

    ac = AmplitudeCutoff(metric_data=md)
    threshold_sorting = ac.threshold_metric(threshold, threshold_sign, **kwargs)
    return threshold_sorting