コード例 #1
0
def plotMOut(config):
    config_section_name = 'M_OUT'
    binary_par = {} 
    binary_par["theta_i_deg"]=float(config[config_section_name]['theta_i_deg'])
    binary_par["EOS"]=config[config_section_name]['EOS']
    binary_par["chi_ns"]=float(config[config_section_name]['chi_ns'])
    binary_par["m_ns"]=float(config[config_section_name]['m_ns'])
    q_min=float(config[config_section_name]['q_min'])
    q_max=float(config[config_section_name]['q_max'])
    q = np.linspace(q_min, q_max, 5*(q_max-q_min+1))
    chi_bh_min=float(config[config_section_name]['chi_bh_min'])
    chi_bh_max=float(config[config_section_name]['chi_bh_max'])
    chi_bh = np.linspace(chi_bh_min, chi_bh_max, 10*(chi_bh_max-chi_bh_min)+1)
    binary_par["type"]=config[config_section_name]['type']

    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True 
    plt.rcParams['ytick.right'] = plt.rcParams['ytick.labelright'] = True
    for j in range(len(chi_bh)):
        m_out_arr = []
        binary_par['chi_bh'] = chi_bh[j]
        for k in range(len(q)):
            binary_par['q'] = q[k] 
            spin_object = sm.Spin_class(binary_par)
            m_out = spin_object.M_out()
            m_out_arr.append(m_out)
        plt.plot(q, m_out_arr, label=r"$\chi_{BH}:$ %.2f" %chi_bh[j])
        plt.legend()
    plt.title(r"$M_{NS}$ = %.2f $M_{\odot}$, EOS = %s, $\theta_i$ = %d$^{\circ}$"%(binary_par["m_ns"], binary_par["EOS"], binary_par["theta_i_deg"]), y=1.08)
    plt.xlabel(r"$q$")
    plt.ylabel(r"$M_{b,out}[M_{\odot}]$")
    plt.show()
コード例 #2
0
def plotChiF_VarTheta(config):
    config_section_name = 'CHI_F_VARTHETA'
    binary_par = {} 
    binary_par["chi_bh"]=float(config[config_section_name]['chi_bh'])
    binary_par["EOS"]=config[config_section_name]['EOS']
    binary_par["chi_ns"]=float(config[config_section_name]['chi_ns'])
    binary_par["m_ns"]=float(config[config_section_name]['m_ns'])
    q_min=float(config[config_section_name]['q_min'])
    q_max=float(config[config_section_name]['q_max'])
    q = np.linspace(q_min, q_max, 5*(q_max-q_min+1))
    theta_i_deg_min=float(config[config_section_name]['theta_i_deg_min'])
    theta_i_deg_max=float(config[config_section_name]['theta_i_deg_max'])
    theta_i_deg = np.linspace(theta_i_deg_min, theta_i_deg_max, 9)
    binary_par["type"]=config[config_section_name]['type']

    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True 
    plt.rcParams['ytick.right'] = plt.rcParams['ytick.labelright'] = True
    for j in range(len(theta_i_deg)):
        chi_f_arr = []
        binary_par['theta_i_deg'] = theta_i_deg[j]
        for k in range(len(q)):
            binary_par['q'] = q[k] 
            spin_object = sm.Spin_class(binary_par)
            chi_f, theta_f, m_final, m_out = spin_object.FinalPar()
            chi_f_arr.append(chi_f)
        
        plt.plot(q, chi_f_arr, label= r'$\theta_i:$ %d$^{\circ}$' %theta_i_deg[j])
        plt.legend()
    plt.title(r"$M_{NS}$ = %.2f $M_{\odot}$, EOS = %s, $\chi_{BH}$= %.2f "%(binary_par["m_ns"], binary_par["EOS"], binary_par["chi_bh"]), y=1.08)
    plt.xlabel(r"$q$")
    plt.ylabel(r"$\chi_f$")
    plt.show()
コード例 #3
0
def sigmaMF(config):
    colors = [
        'b', 'g', 'r', 'c', 'm', 'y', 'k', 'hotpink', 'olivedrab', 'gray'
    ]
    sigma_par = {}
    config_section_name = 'SIGMA_MF'
    sigma_par['m_ns'] = float(config[config_section_name]['m_ns'])
    sigma_par['type'] = config[config_section_name]['type']
    sigma_par['theta_i_deg'] = float(
        config[config_section_name]['theta_i_deg'])
    sigma_par['EOS'] = config[config_section_name]['EOS']
    snr = float(config[config_section_name]['snr'])
    l = float(config[config_section_name]['l'])
    m = float(config[config_section_name]['m'])
    n = float(config[config_section_name]['n'])
    q_min = float(config[config_section_name]['q_min'])
    q_max = float(config[config_section_name]['q_max'])
    q_arr = np.linspace(q_min, q_max, 30)
    chi_bh_min = float(config[config_section_name]['chi_bh_min'])
    chi_bh_max = float(config[config_section_name]['chi_bh_max'])
    chi_bh = np.linspace(chi_bh_min, chi_bh_max, 10)
    qnm = wf.QNM_fit(l, m, n)

    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
    plt.rcParams['ytick.right'] = plt.rcParams['ytick.labelright'] = True
    for i in range(len(chi_bh)):
        sigma_par['chi_bh'] = chi_bh[i]
        m_out_arr = []
        err_m_f = []
        for j in range(len(q_arr)):
            sigma_par['q'] = q_arr[j]
            spin_object = sm.Spin_class(sigma_par)
            chi_f, theta_f, m_f, m_out = spin_object.FinalPar()
            f_rd = qnm.f(m_f, chi_f)
            tau_rd = qnm.tau(m_f, chi_f)
            sigma_m_f = SigmaMF_Fisher(qnm, f_rd, tau_rd, chi_f, m_f, snr)
            m_out_arr.append(m_out)
            err_m_f.append(sigma_m_f)
        plt.plot(q_arr,
                 err_m_f,
                 color=colors[i % 10],
                 label=r"$\sigma_M$, $\chi_{BH}$:%.1f" % chi_bh[i],
                 linestyle='--')
        plt.plot(q_arr,
                 m_out_arr,
                 colors[i % 10],
                 label=r"$M_{OUT}$,$\chi_{BH}:%.1f$" % chi_bh[i],
                 linestyle='-')
        #idx = np.argwhere(np.diff(np.sign(np.array(err_m_f) - np.array(m_out_arr))).flatten()
        #plt.plot(q_arr[idx], m_out_arr[idx], 'ro')
    plt.title(r"$M_{NS}$=%.2f, EOS= %s, mode = %d%d%d, SNR = %d" %
              (sigma_par["m_ns"], sigma_par["EOS"], l, m, n, snr),
              y=1.08)
    plt.xlabel(r"$q$")
    plt.ylabel(r"$[M_{\odot}]$")
    plt.legend()
    plt.show()
コード例 #4
0
def sigma_freq(snr, mode1, mode2, binary_par):

    spin_object = sm.Spin_class(binary_par)
    a_f, theta_f, m_f, m_out = spin_object.FinalPar()

    if mode1 == mode2:
        print("non orthogonal mode")
    else:
        l1 = int(mode1[0])
        m1 = int(mode1[1])
        n1 = int(mode1[2])
        l2 = int(mode2[0])
        m2 = int(mode2[1])
        n2 = int(mode2[2])

    # Pair of modes
    qnm1 = wf.QNM_fit(l1, m1, n1)
    qnm2 = wf.QNM_fit(l2, m2, n2)

    f1 = qnm1.f(m_f, a_f)
    f2 = qnm2.f(m_f, a_f)

    tau1 = qnm1.tau(m_f, a_f)
    tau2 = qnm2.tau(m_f, a_f)

    Q1 = np.pi * f1 * tau1
    Q2 = np.pi * f2 * tau2

    amplitude_object = am.Amplitude_class(binary_par)
    switch = {
        "220": amplitude_object.A22220,
        "210": amplitude_object.A21210,
    }

    A1 = switch[mode1](0)
    A2 = switch[mode2](0)
    #print(f1,f2,tau1,tau2,A1,A2, m_f, a_f)
    sigma = 1./(snr*2*2**(1./2))*(f1**3*(3+16*Q1**4)/(A1**2*Q1**7)*\
                                   (A1**2*Q1**3/(f1*(1+4*Q1**2))+\
                                    A2**2*Q2**3/(f2*(1+4*Q2**2))))**(1./2)
    sigma = 1. / (2**(1. / 2) * np.pi * tau1 * snr)
    return sigma
コード例 #5
0
def sigma_tau(snr, mode1, mode2, binary_par):

    spin_object = sm.Spin_class(binary_par)
    a_f, theta_f, m_f, m_out = spin_object.FinalPar()

    if mode1 == mode2:
        print("Error, non orthogonal modes")
    else:
        l1 = int(mode1[0])
        m1 = int(mode1[1])
        n1 = int(mode1[2])
        l2 = int(mode2[0])
        m2 = int(mode2[1])
        n2 = int(mode2[2])

    qnm1 = wf.QNM_fit(l1, m1, n1)
    qnm2 = wf.QNM_fit(l2, m2, n2)

    f1 = qnm1.f(m_f, a_f)
    f2 = qnm2.f(m_f, a_f)

    tau1 = qnm1.tau(m_f, a_f)
    tau2 = qnm2.tau(m_f, a_f)

    Q1 = np.pi * f1 * tau1
    Q2 = np.pi * f2 * tau2

    amplitude_object = am.Amplitude_class(binary_par)
    switch = {
        "220": amplitude_object.A22220,
        "210": amplitude_object.A21210,
    }

    A1 = switch[mode1](0)
    A2 = switch[mode2](0)
    sigma = 2./(snr*np.pi)*((3+4*Q1**2)/(A1**2*f1*Q1)*\
                            (A1**2*Q1**3/(f1*(1+4*Q1**2))+\
                             A2**2*Q2**3/(f2*(1+4*Q2**2))))**(1./2)
    sigma = 2. * tau1 / snr

    return sigma
コード例 #6
0
    def __init__(self, iterate=()):
        self.__dict__.update(iterate)

        # useful quantities
        self.eta = self.q / (1 + self.q)**2
        self.m_bh = self.q * self.m_ns
        self.M = self.m_ns + self.m_bh
        #self.G = 6.67*10**(-8)
        self.G = lal.G_SI
        #self.c = 3*10**(10)
        self.c = lal.C_SI
        #self.m_sol = 2*10**33
        self.m_sol = lal.MSUN_SI
        self.chi_ns = 0
        self.winfact = 1. / 2  # ok=1/2, paper=1
        # coefficients for PhenomC model
        self.gamma = self.xi01[6] * self.chi_bh + self.xi02[
            6] * self.chi_bh**2 + self.xi11[
                6] * self.eta * self.chi_bh + self.xi10[
                    6] * self.eta + self.xi20[6] * self.eta**2
        self.delta1 = self.xi01[7] * self.chi_bh + self.xi02[
            7] * self.chi_bh**2 + self.xi11[
                7] * self.eta * self.chi_bh + self.xi10[
                    7] * self.eta + self.xi20[7] * self.eta**2
        self.delta2 = self.xi01[8] * self.chi_bh + self.xi02[
            8] * self.chi_bh**2 + self.xi11[
                8] * self.eta * self.chi_bh + self.xi10[
                    8] * self.eta + self.xi20[8] * self.eta**2
        # spin section
        binary_par = {
            "m_ns": self.m_ns,
            "q": self.q,
            "theta_i_deg": self.theta_i_deg,
            "chi_bh": self.chi_bh,
            "EOS": self.EOS,
            "type": self.type
        }

        spin_object = sm.Spin_class(binary_par)
        chi_f, theta_f, m_f, m_out = spin_object.FinalPar()
        self.chi_f = float(chi_f)
        self.theta_f = float(theta_f)
        self.m_f = float(m_f)
        self.m_out = float(m_out)

        # Ringdown frequency and damping time
        # From Arxiv:gr-qc/0512160v2 eq. E1, E2
        self.f_220_ringdown = (1.5251 - 1.1568 * (1 - self.chi_f)**
                               (0.1292)) / (2 * np.pi * self.m_f * self.m_sol *
                                            self.G / self.c**2) * self.c
        self.Q_220_ringdown = 0.7 + 1.4187 * (1 - self.chi_f)**(-0.4990)
        self.tau_220_ringdown = self.Q_220_ringdown / self.f_220_ringdown / np.pi

        # PhenomC for BBH
        if self.type == "BBH":
            self.eps_insp = 1
            self.k = 1
            self.sigma_tid = 0
            self.eps_tid = 1

            self.f0_pn = 0.98 * self.f_220_ringdown
            self.f0_pm = 0.98 * self.f_220_ringdown
            self.f0_rd = 0.98 * self.f_220_ringdown

        # PhenomMixed
        if self.type == "BHNS":
            print("Total mass outside BH at late times: %.3f" % m_out)
            m_g, m_b, compactness = np.loadtxt("EOS/equil_{}.d".format(
                self.EOS),
                                               unpack=True)
            C_from_mg = interp1d(m_g, compactness)
            self.C = float(C_from_mg(self.m_ns))
            mb_from_mg = interp1d(m_g, m_b)
            self.m_ns_b = float(mb_from_mg(self.m_ns))

            xi_tid = fsolve(spin_object.XiTidal, 10)
            r_tid = xi_tid * (self.m_ns * self.m_sol * self.G /
                              self.c**2) / self.C * (1 - 2 * self.C)
            #r_tid = self.eta**(-1./3)*(self.m_ns*self.m_sol*self.G/self.c**2)/self.C*(1-2*self.C)

            # frequencies in Hz
            self.f_tid = float(
                1. /
                (np.pi *
                 (self.chi_f * self.m_f * self.m_sol * self.G / self.c**2 +
                  (r_tid**3 /
                   (self.m_f * self.m_sol * self.G / self.c**2))**(1. / 2))) *
                self.c)
            #print("theta_i_deg", self.theta_i_deg)
            #print("chi_bh", self.chi_bh)
            #print("chi_f", self.chi_f)
            self.f_220_tilde = 0.99 * 0.98 * self.f_220_ringdown
            self.k = 1.25
            if self.x_var == "f":
                plt.axvline(self.f_220_ringdown, 0.9, 1, color="c")
                plt.axvline(self.f_tid, 0.9, 1, color="r")
            if self.x_var == "fm":
                plt.axvline(self.f_220_ringdown * self.G / self.c**3 * self.M *
                            self.m_sol,
                            0.9,
                            1,
                            color="c")
                plt.axvline(self.f_tid * self.G / self.c**3 * self.M *
                            self.m_sol,
                            0.9,
                            1,
                            color="r")
            if self.eta >= 5. / 36:
                self.alpha = 1 + self.winfact * self.Windowed_function(
                    self.eta, 0.146872, 0.0749456, -1)
            if self.eta < 5. / 36:
                self.alpha = 1 + self.winfact * self.Windowed_function(
                    5. / 36, 0.146872, 0.0749456, -1)
            self.delta2prime = self.alpha * self.delta2

            # Non disruptive
            if self.f_220_ringdown <= self.f_tid and self.m_out == 0:
                print("Case: Non disruptive")
                self.x_nd1 = (
                    (self.f_tid - self.f_220_tilde) / self.f_220_tilde
                )**2 - 0.571505 * self.C - 0.00508451 * self.chi_bh
                self.x_nd2 = (
                    (self.f_tid - self.f_220_tilde) / self.f_220_tilde
                )**2 - 0.657424 * self.C - 0.0259977 * self.chi_bh

                self.eps_tid = self.winfact * 2 * self.Windowed_function(
                    self.x_nd1, -0.0796251, 0.0801192, 1)
                self.sigma_tid = self.winfact * 2 * self.Windowed_function(
                    self.x_nd2, -0.206465, 0.226844,
                    -1) / (self.G / self.c**3 * self.M * self.m_sol)
                #self.delta2prime = 1.62496*self.winfact*self.Windowed_function((self.f_tid-self.f_220_tilde)/self.f_220_tilde, 0.0188092, 0.338737, -1)

                self.f0_pn = self.f_220_tilde
                self.f0_pm = self.f_220_tilde
                self.f0_rd = self.f_220_tilde
                #print("")
                #print("f0_pn", self.f0_pn)
                #print("f0_pm", self.f0_pm)
                #print("f0_rd", self.f0_rd)
                #print("eps_tid", self.eps_tid)
                #print("sigma_tid", self.sigma_tid)
                #print("delta2prime", self.delta2prime)
                #print("x_nd", self.x_nd1)
                #print("")

            # Disruptive
            if self.f_tid < self.f_220_ringdown and self.m_out > 0:
                print("Case: Disruptive")
                self.x_d1 = self.m_out/self.m_ns_b+0.424912*self.C+\
                        0.363604*(self.eta)**(1./2)-0.0605591*self.chi_bh
                self.x_d2 = self.m_out/self.m_ns_b-0.132754*self.C+\
                        0.576669*(self.eta)**(1./2)-0.0603749*self.chi_bh-\
                        0.0601185*self.chi_bh**2-0.0729134*self.chi_bh**3

                self.esp_tid = 0
                self.eps_insp = -1.61724 * self.x_d1 + 1.29971
                self.sigma_tid = (-0.293237*self.x_d2+0.1377221)/\
                        (self.G/self.c**3*self.M*self.m_sol)

                self.f0_pn = self.eps_insp * self.f_tid
                self.f0_pm = self.f_tid

            # Mildly disruptive 1
            if self.f_tid < self.f_220_ringdown and self.m_out == 0:
                print("Case: Midly disruptive, no ringdown, no M outside BH")
                self.x_d1 = self.m_out/self.m_ns_b+0.424912*self.C+\
                        0.363604*(self.eta)**(1./2)-0.0605591*self.chi_bh
                self.x_d2 = self.m_out/self.m_ns_b-0.132754*self.C+\
                        0.576669*(self.eta)**(1./2)-0.0603749*self.chi_bh-\
                        0.0601185*self.chi_bh**2-0.0729134*self.chi_bh**3
                self.x_nd2 = (
                    (self.f_tid - self.f_220_tilde) / self.f_220_tilde
                )**2 - 0.657424 * self.C - 0.0259977 * self.chi_bh

                self.eps_tid = 0
                self.eps_insp = -1.61724 * self.x_d1 + 1.29971
                self.sigma_tid_d = (-0.293237*self.x_d2+0.1377221)/\
                        (self.G/self.c**3*self.M*self.m_sol)
                self.sigma_tid_nd = self.winfact * 2 * self.Windowed_function(
                    self.x_nd2, -0.206465, 0.226844,
                    -1) / (self.G / self.c**3 * self.M * self.m_sol)
                self.sigma_tid = (self.sigma_tid_d + self.sigma_tid_nd) / 2.

                self.f0_pn = (1-self.q**(-1))*self.f_220_tilde+\
                        self.q**(-1)*self.eps_insp*self.f_tid
                self.f0_pm = (1-self.q**(-1))*self.f_220_tilde+\
                        self.q**(-1)*self.f_tid

            # Mildly disruptive 2
            if self.f_220_ringdown <= self.f_tid and self.m_out > 0:
                print("Case: Mildly diruptive, ringdown, M outside BH")
                self.x_d1 = self.m_out/self.m_ns_b+0.424912*self.C+\
                        0.363604*(self.eta)**(1./2)-0.0605591*self.chi_bh
                self.x_nd1 = (
                    (self.f_tid - self.f_220_tilde) / self.f_220_tilde
                )**2 - 0.571505 * self.C - 0.00508451 * self.chi_bh
                self.x_nd2 = (
                    (self.f_tid - self.f_220_tilde) / self.f_220_tilde
                )**2 - 0.657424 * self.C - 0.0259977 * self.chi_bh

                self.eps_insp = -1.61724 * self.x_d1 + 1.29971
                self.eps_tid = self.winfact * 2 * self.Windowed_function(
                    self.x_nd1, -0.0796251, 0.0801192, 1)
                self.sigma_tid = self.winfact * 2 * self.Windowed_function(
                    self.x_nd2, -0.206465, 0.226844,
                    -1) / (self.G / self.c**3 * self.M * self.m_sol)
                #self.delta2prime = 1.62496*self.winfact*self.Windowed_function((self.f_tid-self.f_220_tilde)/self.f_220_tilde, 0.0188092, 0.338737, -1)
                self.f0_pn = self.eps_insp * self.f_220_tilde
                self.f0_pm = self.f_220_tilde
                self.f0_rd = self.f_220_tilde

            print("Tidal frequency %.2f" % self.f_tid)
            print("Ringdown frequency: %.2f" % self.f_220_tilde)
        #print("eps_tid", self.eps_tid)
        #print("eps_insp", self.eps_insp)
        #print("m_out", self.m_out)
        #print("f_tidal", self.f_tid)
        #print("f_220", self.f_220_tilde)
        #print("f_220_ring", self.f_220_ringdown)

        self.d_bbh = 0.015 / (self.G / self.c**3 * self.M * self.m_sol)
        self.d = self.d_bbh + self.sigma_tid
コード例 #7
0
def ParameterZones(config):
    config_section_name = 'PARAMETER_ZONES'
    binary_par = {}
    binary_par["theta_i_deg"]=float(config[config_section_name]['theta_i_deg'])
    binary_par["EOS"]=config[config_section_name]['EOS']
    binary_par["chi_ns"]=float(config[config_section_name]['chi_ns'])
    m_ns = binary_par["m_ns"]=float(config[config_section_name]['m_ns'])
    q_min=float(config[config_section_name]['q_min'])
    q_max=float(config[config_section_name]['q_max'])
    q = np.linspace(q_min, q_max, 20*(q_max-q_min+1))
    chi_bh_min=float(config[config_section_name]['chi_bh_min'])
    chi_bh_max=float(config[config_section_name]['chi_bh_max'])
    chi_bh = np.linspace(chi_bh_min, chi_bh_max, 15*(chi_bh_max-chi_bh_min)+1)
    binary_par["type"]=config[config_section_name]['type']
  
    G = 6.67*10**(-8)
    c = 3*10**(10)
    m_sol = 2*10**33

    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True 
    plt.rcParams['ytick.right'] = plt.rcParams['ytick.labelright'] = True
    m_out_chi = []
    m_out_q = []
    f_chi = []
    f_q = []
    qnm_object = wf.QNM_fit(2,2,0)

    for j in range(len(chi_bh)):
        m_out_arr = []
        m_out_first_time = 0
        f_tid_maj_f_220 = 0
        binary_par['chi_bh'] = chi_bh[j]
        for k in range(len(q)):
            binary_par['q'] = q[k] 
            spin_object = sm.Spin_class(binary_par)
            chi_f, theta_f, m_f, m_out = spin_object.FinalPar()
            m_out_arr.append(m_out)
            binary_par['q'] = q[k] 
            f_220 = qnm_object.f(m_f,chi_f)
            xi_tid = fsolve(spin_object.XiTidal,10)
            r_tid = xi_tid*(m_ns*m_sol*G/c**2)/spin_object.C*(1-2*spin_object.C)
            f_tid = float(1./(np.pi*(chi_f*m_f*m_sol*G/c**2+(r_tid**3/(m_f*m_sol*G/c**2))**(1./2)))*c)
            #print("")
            #print("m_out",m_out)
            #print("chi",chi_bh[j])
            #print("q",q[k])
            #print("")

            if f_tid>=f_220 and f_tid_maj_f_220==0:
                f_tid_maj_f_220=1
                f_chi.append(chi_bh[j])
                f_q.append(q[k])
                #print("")
                #print("f_220", f_220)
                #print("f_tid",f_tid)
                #print("chi",chi_bh[j])
                #print("q",q[k])
                #print("")
            if m_out==0 and m_out_first_time==0:
                m_out_first_time = 1
                m_out_chi.append(chi_bh[j])
                #print("")
                #print(chi_bh[j])
                m_out_q.append(q[k])
                #print(q[k])
                #print("")
        #plt.plot(q, m_out_arr, label=r"$\chi_{BH}:$ %.2f" %chi_bh[j])
        #plt.legend()
    #plt.title(r"$M_{NS}$ = %.2f $M_{\odot}$, EOS = %s, $\theta_i$ = %d$^{\circ}$" %(binary_par["m_ns"], binary_par["EOS"], binary_par["theta_i_deg"]), y=1.08)
    plt.plot(f_chi, f_q,label=r'$f_{tid}=f_{220}$')
    plt.plot(m_out_chi, m_out_q, label=r'$M_{OUT}=0$')
    plt.xlabel(r'$\chi_{BH}$')
    plt.ylabel(r'$q$')
    switch={
        "2H":[[0.1,9],[0.5,9],[0.4,6.5],[-0.01,6.0],[-0.01,5.8]],
        "H": [[0.2,8],[0.65,8],[0.6,4],[-0.05,3.4],[-0.05,3.2]],
        "HB":[[0.2,7],[0.6,6],[0.6,3.5],[-0.05,3],[-0.05,2.7]],
        "B": [[0.2,6],[0.65,5],[0.65,2.5],[-0.01,2.5],[-0.01,2.3]]
    }
    position = switch[binary_par["EOS"]]
    plt.text(position[0][0],position[0][1], r'$f_{220}<f_{tid}, M_{OUT}=0$')
    plt.text(position[1][0],position[1][1], r'$f_{220}<f_{tid}, M_{OUT}>0$')
    plt.text(position[2][0],position[2][1], r'$f_{tid}<f_{220}, M_{OUT}>0$')
    plt.text(position[3][0],position[3][1], r'$f_{tid}<f_{220}$')
    plt.text(position[4][0],position[4][1], r'$M_{OUT}=0$')
    plt.title(r"$M_{NS}=%.2f, EOS=%s, \theta_i=%d $"%(m_ns, binary_par["EOS"], binary_par["theta_i_deg"]),y=1.08)
    plt.legend()
    plt.show()