def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_global_loglevel(verbose=verbose) # Initialization param = Param() start_time = time.time() fname_anat = arguments.i fname_centerline = arguments.s param.algo_fitting = arguments.algo_fitting if arguments.smooth is not None: sigmas = arguments.smooth remove_temp_files = arguments.r if arguments.o is not None: fname_out = arguments.o else: fname_out = extract_fname(fname_anat)[1] + '_smooth.nii' # Display arguments printv('\nCheck input arguments...') printv(' Volume to smooth .................. ' + fname_anat) printv(' Centerline ........................ ' + fname_centerline) printv(' Sigma (mm) ........................ ' + str(sigmas)) printv(' Verbose ........................... ' + str(verbose)) # Check that input is 3D: nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim dim = 4 # by default, will be adjusted later if nt == 1: dim = 3 if nz == 1: dim = 2 if dim == 4: printv( 'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n' 'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat, verbose, 'warning') printv('4D images not supported, aborting ...', verbose, 'error') # Extract path/file/extension path_anat, file_anat, ext_anat = extract_fname(fname_anat) path_centerline, file_centerline, ext_centerline = extract_fname( fname_centerline) path_tmp = tmp_create(basename="smooth_spinalcord") # Copying input data to tmp folder printv('\nCopying input data to tmp folder and convert to nii...', verbose) copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat)) copy(fname_centerline, os.path.join(path_tmp, "centerline" + ext_centerline)) # go to tmp folder curdir = os.getcwd() os.chdir(path_tmp) # convert to nii format im_anat = convert(Image('anat' + ext_anat)) im_anat.save('anat.nii', mutable=True, verbose=verbose) im_centerline = convert(Image('centerline' + ext_centerline)) im_centerline.save('centerline.nii', mutable=True, verbose=verbose) # Change orientation of the input image into RPI printv('\nOrient input volume to RPI orientation...') img_anat_rpi = Image("anat.nii").change_orientation("RPI") fname_anat_rpi = add_suffix(img_anat_rpi.absolutepath, "_rpi") img_anat_rpi.save(path=fname_anat_rpi, mutable=True) # Change orientation of the input image into RPI printv('\nOrient centerline to RPI orientation...') img_centerline_rpi = Image("centerline.nii").change_orientation("RPI") fname_centerline_rpi = add_suffix(img_centerline_rpi.absolutepath, "_rpi") img_centerline_rpi.save(path=fname_centerline_rpi, mutable=True) # Straighten the spinal cord # straighten segmentation printv('\nStraighten the spinal cord using centerline/segmentation...', verbose) cache_sig = cache_signature( input_files=[fname_anat_rpi, fname_centerline_rpi], input_params={"x": "spline"}) cachefile = os.path.join(curdir, "straightening.cache") if cache_valid(cachefile, cache_sig) and os.path.isfile( os.path.join( curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile( os.path.join( curdir, 'warp_straight2curve.nii.gz')) and os.path.isfile( os.path.join(curdir, 'straight_ref.nii.gz')): # if they exist, copy them into current folder printv('Reusing existing warping field which seems to be valid', verbose, 'warning') copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'), 'warp_curve2straight.nii.gz') copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'), 'warp_straight2curve.nii.gz') copy(os.path.join(curdir, 'straight_ref.nii.gz'), 'straight_ref.nii.gz') # apply straightening run_proc([ 'sct_apply_transfo', '-i', fname_anat_rpi, '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'anat_rpi_straight.nii', '-x', 'spline' ], verbose) else: run_proc([ 'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o', 'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x', 'spline', '-param', 'algo_fitting=' + param.algo_fitting ], verbose) cache_save(cachefile, cache_sig) # move warping fields locally (to use caching next time) copy('warp_curve2straight.nii.gz', os.path.join(curdir, 'warp_curve2straight.nii.gz')) copy('warp_straight2curve.nii.gz', os.path.join(curdir, 'warp_straight2curve.nii.gz')) # Smooth the straightened image along z printv('\nSmooth the straightened image...') img = Image("anat_rpi_straight.nii") out = img.copy() if len(sigmas) == 1: sigmas = [sigmas[0] for i in range(len(img.data.shape))] elif len(sigmas) != len(img.data.shape): raise ValueError( "-smooth need the same number of inputs as the number of image dimension OR only one input" ) sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)] out.data = smooth(out.data, sigmas) out.save(path="anat_rpi_straight_smooth.nii") # Apply the reversed warping field to get back the curved spinal cord printv( '\nApply the reversed warping field to get back the curved spinal cord...' ) run_proc([ 'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o', 'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w', 'warp_straight2curve.nii.gz', '-x', 'spline' ], verbose) # replace zeroed voxels by original image (issue #937) printv('\nReplace zeroed voxels by original image...', verbose) nii_smooth = Image('anat_rpi_straight_smooth_curved.nii') data_smooth = nii_smooth.data data_input = Image('anat.nii').data indzero = np.where(data_smooth == 0) data_smooth[indzero] = data_input[indzero] nii_smooth.data = data_smooth nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii') # come back os.chdir(curdir) # Generate output file printv('\nGenerate output file...') generate_output_file( os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"), fname_out) # Remove temporary files if remove_temp_files == 1: printv('\nRemove temporary files...') rmtree(path_tmp) # Display elapsed time elapsed_time = time.time() - start_time printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's\n') display_viewer_syntax([fname_anat, fname_out], verbose=verbose)
def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv if argv else ['--help']) verbose = arguments.v set_global_loglevel(verbose=verbose) # initializations initz = '' initcenter = '' fname_initlabel = '' file_labelz = 'labelz.nii.gz' param = Param() fname_in = os.path.abspath(arguments.i) fname_seg = os.path.abspath(arguments.s) contrast = arguments.c path_template = os.path.abspath(arguments.t) scale_dist = arguments.scale_dist path_output = arguments.ofolder param.path_qc = arguments.qc if arguments.discfile is not None: fname_disc = os.path.abspath(arguments.discfile) else: fname_disc = None if arguments.initz is not None: initz = arguments.initz if len(initz) != 2: raise ValueError( '--initz takes two arguments: position in superior-inferior direction, label value' ) if arguments.initcenter is not None: initcenter = arguments.initcenter # if user provided text file, parse and overwrite arguments if arguments.initfile is not None: file = open(arguments.initfile, 'r') initfile = ' ' + file.read().replace('\n', '') arg_initfile = initfile.split(' ') for idx_arg, arg in enumerate(arg_initfile): if arg == '-initz': initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')] if len(initz) != 2: raise ValueError( '--initz takes two arguments: position in superior-inferior direction, label value' ) if arg == '-initcenter': initcenter = int(arg_initfile[idx_arg + 1]) if arguments.initlabel is not None: # get absolute path of label fname_initlabel = os.path.abspath(arguments.initlabel) if arguments.param is not None: param.update(arguments.param[0]) remove_temp_files = arguments.r clean_labels = arguments.clean_labels laplacian = arguments.laplacian path_tmp = tmp_create(basename="label_vertebrae") # Copying input data to tmp folder printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = cache_signature(input_files=[fname_in, fname_seg], ) cachefile = os.path.join(curdir, "straightening.cache") if cache_valid(cachefile, cache_sig) and os.path.isfile( os.path.join( curdir, "warp_curve2straight.nii.gz")) and os.path.isfile( os.path.join( curdir, "warp_straight2curve.nii.gz")) and os.path.isfile( os.path.join(curdir, "straight_ref.nii.gz")): # if they exist, copy them into current folder printv('Reusing existing warping field which seems to be valid', verbose, 'warning') copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = run_proc([ 'sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii' ]) else: sct_straighten_spinalcord.main(argv=[ '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files), '-v', str(verbose), ]) cache_save(cachefile, cache_sig) # resample to 0.5mm isotropic to match template resolution printv('\nResample to 0.5mm isotropic...', verbose) s, o = run_proc([ 'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii' ], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI printv('\nApply straightening to segmentation...', verbose) run_proc( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation.nii', 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'), verbose=verbose, is_sct_binary=True, ) # Threshold segmentation at 0.5 run_proc([ 'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o', 'segmentation_straight.nii' ], verbose) # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label printv('\nApply straightening to disc labels...', verbose) run_proc( 'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'label'), verbose=verbose) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: # create label to identify disc printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, file_labelz) if initz or initcenter: if initcenter: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim # Get dimensions z_center = int(np.round(nz / 2)) # get z_center initz = [z_center, initcenter] im_label = create_labels_along_segmentation( Image('segmentation.nii'), [(initz[0], initz[1])]) im_label.data = dilate(im_label.data, 3, 'ball') im_label.save(fname_labelz) elif fname_initlabel: Image(fname_initlabel).save(fname_labelz) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') if not remove_temp_files: # because verbose is here also used for keeping temp files verbose_detect_c2c3 = 2 else: verbose_detect_c2c3 = 0 im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast, verbose=verbose_detect_c2c3) ind_label = np.where(im_label_c2c3.data) if not np.size(ind_label) == 0: im_label_c2c3.data[ind_label] = 3 else: printv( 'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') sys.exit() im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz) # Apply straightening to z-label printv('\nAnd apply straightening to label...', verbose) run_proc( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labelz_straight.nii.gz', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) # get z value and disk value to initialize labeling printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') printv('.. ' + str(init_disc), verbose) # apply laplacian filtering if laplacian: printv('\nApply Laplacian filter...', verbose) run_proc([ 'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1', '-o', 'data_straightr.nii' ], verbose) # detect vertebral levels on straight spinal cord init_disc[1] = init_disc[1] - 1 vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord printv('\nUn-straighten labeling...', verbose) run_proc( 'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' % ('segmentation_straight_labeled.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled.nii', 'NearestNeighbor'), verbose=verbose, is_sct_binary=True, ) if clean_labels: # Clean labeled segmentation printv( '\nClean labeled segmentation (correct interpolation errors)...', verbose) clean_labeled_segmentation('segmentation_labeled.nii', 'segmentation.nii', 'segmentation_labeled.nii') # label discs printv('\nLabel discs...', verbose) printv('\nUn-straighten labeled discs...', verbose) run_proc( 'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' % ('segmentation_straight_labeled_disc.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii', 'label'), verbose=verbose, is_sct_binary=True, ) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) printv('\nGenerate output files...', verbose) generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) generate_output_file( os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose=verbose) generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose=verbose) generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose=verbose) # Remove temporary files if remove_temp_files == 1: printv('\nRemove temporary files...', verbose) rmtree(path_tmp) # Generate QC report if param.path_qc is not None: path_qc = os.path.abspath(arguments.qc) qc_dataset = arguments.qc_dataset qc_subject = arguments.qc_subject labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=argv, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])
def main(argv=None): parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_loglevel(verbose=verbose) fname_in = os.path.abspath(arguments.i) fname_seg = os.path.abspath(arguments.s) contrast = arguments.c path_template = os.path.abspath(arguments.t) scale_dist = arguments.scale_dist path_output = os.path.abspath(arguments.ofolder) fname_disc = arguments.discfile if fname_disc is not None: fname_disc = os.path.abspath(fname_disc) initz = arguments.initz initcenter = arguments.initcenter fname_initlabel = arguments.initlabel if fname_initlabel is not None: fname_initlabel = os.path.abspath(fname_initlabel) remove_temp_files = arguments.r clean_labels = arguments.clean_labels path_tmp = tmp_create(basename="label_vertebrae") # Copying input data to tmp folder printv('\nCopying input data to tmp folder...', verbose) Image(fname_in).save(os.path.join(path_tmp, "data.nii")) Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii")) # Go go temp folder curdir = os.getcwd() os.chdir(path_tmp) # Straighten spinal cord printv('\nStraighten spinal cord...', verbose) # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time) cache_sig = cache_signature(input_files=[fname_in, fname_seg], ) fname_cache = "straightening.cache" if (cache_valid(os.path.join(curdir, fname_cache), cache_sig) and os.path.isfile( os.path.join(curdir, "warp_curve2straight.nii.gz")) and os.path.isfile( os.path.join(curdir, "warp_straight2curve.nii.gz")) and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz"))): # if they exist, copy them into current folder printv('Reusing existing warping field which seems to be valid', verbose, 'warning') copy(os.path.join(curdir, "warp_curve2straight.nii.gz"), 'warp_curve2straight.nii.gz') copy(os.path.join(curdir, "warp_straight2curve.nii.gz"), 'warp_straight2curve.nii.gz') copy(os.path.join(curdir, "straight_ref.nii.gz"), 'straight_ref.nii.gz') # apply straightening s, o = run_proc([ 'sct_apply_transfo', '-i', 'data.nii', '-w', 'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o', 'data_straight.nii' ]) else: sct_straighten_spinalcord.main(argv=[ '-i', 'data.nii', '-s', 'segmentation.nii', '-r', str(remove_temp_files), '-v', '0', ]) cache_save(os.path.join(path_output, fname_cache), cache_sig) # resample to 0.5mm isotropic to match template resolution printv('\nResample to 0.5mm isotropic...', verbose) s, o = run_proc([ 'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x', 'linear', '-o', 'data_straightr.nii' ], verbose=verbose) # Apply straightening to segmentation # N.B. Output is RPI printv('\nApply straightening to segmentation...', verbose) sct_apply_transfo.main([ '-i', 'segmentation.nii', '-d', 'data_straightr.nii', '-w', 'warp_curve2straight.nii.gz', '-o', 'segmentation_straight.nii', '-x', 'linear', '-v', '0' ]) # Threshold segmentation at 0.5 img = Image('segmentation_straight.nii') img.data = threshold(img.data, 0.5) img.save() # If disc label file is provided, label vertebrae using that file instead of automatically if fname_disc: # Apply straightening to disc-label printv('\nApply straightening to disc labels...', verbose) run_proc( 'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' % (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz', 'labeldisc_straight.nii.gz', 'label'), verbose=verbose) label_vert('segmentation_straight.nii', 'labeldisc_straight.nii.gz', verbose=1) else: printv('\nCreate label to identify disc...', verbose) fname_labelz = os.path.join(path_tmp, 'labelz.nii.gz') if initcenter is not None: # find z centered in FOV nii = Image('segmentation.nii').change_orientation("RPI") nx, ny, nz, nt, px, py, pz, pt = nii.dim z_center = round(nz / 2) initz = [z_center, initcenter] if initz is not None: im_label = create_labels_along_segmentation( Image('segmentation.nii'), [tuple(initz)]) im_label.save(fname_labelz) elif fname_initlabel is not None: Image(fname_initlabel).save(fname_labelz) else: # automatically finds C2-C3 disc im_data = Image('data.nii') im_seg = Image('segmentation.nii') # because verbose is also used for keeping temp files verbose_detect_c2c3 = 0 if remove_temp_files else 2 im_label_c2c3 = detect_c2c3(im_data, im_seg, contrast, verbose=verbose_detect_c2c3) ind_label = np.where(im_label_c2c3.data) if np.size(ind_label) == 0: printv( 'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils', 1, 'error') sys.exit(1) im_label_c2c3.data[ind_label] = 3 im_label_c2c3.save(fname_labelz) # dilate label so it is not lost when applying warping dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz) # Apply straightening to z-label printv('\nAnd apply straightening to label...', verbose) sct_apply_transfo.main([ '-i', 'labelz.nii.gz', '-d', 'data_straightr.nii', '-w', 'warp_curve2straight.nii.gz', '-o', 'labelz_straight.nii.gz', '-x', 'nn', '-v', '0' ]) # get z value and disk value to initialize labeling printv('\nGet z and disc values from straight label...', verbose) init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz') printv('.. ' + str(init_disc), verbose) # apply laplacian filtering if arguments.laplacian: printv('\nApply Laplacian filter...', verbose) img = Image("data_straightr.nii") # apply std dev to each axis of the image sigmas = [1 for i in range(len(img.data.shape))] # adjust sigma based on voxel size sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)] # smooth data img.data = laplacian(img.data, sigmas) img.save() # detect vertebral levels on straight spinal cord init_disc[1] = init_disc[1] - 1 vertebral_detection('data_straightr.nii', 'segmentation_straight.nii', contrast, arguments.param, init_disc=init_disc, verbose=verbose, path_template=path_template, path_output=path_output, scale_dist=scale_dist) # un-straighten labeled spinal cord printv('\nUn-straighten labeling...', verbose) sct_apply_transfo.main([ '-i', 'segmentation_straight_labeled.nii', '-d', 'segmentation.nii', '-w', 'warp_straight2curve.nii.gz', '-o', 'segmentation_labeled.nii', '-x', 'nn', '-v', '0' ]) if clean_labels >= 1: printv('\nCleaning labeled segmentation:', verbose) im_labeled_seg = Image('segmentation_labeled.nii') im_seg = Image('segmentation.nii') if clean_labels >= 2: printv(' filling in missing label voxels ...', verbose) expand_labels(im_labeled_seg) printv(' removing labeled voxels outside segmentation...', verbose) crop_labels(im_labeled_seg, im_seg) printv('Done cleaning.', verbose) im_labeled_seg.save() # label discs printv('\nLabel discs...', verbose) printv('\nUn-straighten labeled discs...', verbose) run_proc( 'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' % ('segmentation_straight_labeled_disc.nii', 'segmentation.nii', 'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii', 'label'), verbose=verbose, is_sct_binary=True, ) # come back os.chdir(curdir) # Generate output files path_seg, file_seg, ext_seg = extract_fname(fname_seg) fname_seg_labeled = os.path.join(path_output, file_seg + '_labeled' + ext_seg) printv('\nGenerate output files...', verbose) generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"), fname_seg_labeled) generate_output_file( os.path.join(path_tmp, "segmentation_labeled_disc.nii"), os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg)) # copy straightening files in case subsequent SCT functions need them generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"), os.path.join(path_output, "warp_curve2straight.nii.gz"), verbose=verbose) generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"), os.path.join(path_output, "warp_straight2curve.nii.gz"), verbose=verbose) generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"), os.path.join(path_output, "straight_ref.nii.gz"), verbose=verbose) # Remove temporary files if remove_temp_files == 1: printv('\nRemove temporary files...', verbose) rmtree(path_tmp) # Generate QC report if arguments.qc is not None: path_qc = os.path.abspath(arguments.qc) qc_dataset = arguments.qc_dataset qc_subject = arguments.qc_subject labeled_seg_file = os.path.join(path_output, file_seg + '_labeled' + ext_seg) generate_qc(fname_in, fname_seg=labeled_seg_file, args=argv, path_qc=os.path.abspath(path_qc), dataset=qc_dataset, subject=qc_subject, process='sct_label_vertebrae') display_viewer_syntax([fname_in, fname_seg_labeled], colormaps=['', 'subcortical'], opacities=['1', '0.5'])