コード例 #1
0
def test_sct_register_multimodal_with_softmask(tmp_path):
    """
    Verify that softmask is actually applied during registration.

    NB: For 'gaussian', ANTs binaries can't handle softmasks natively, so SCT should be applying
        the mask directly to the image. Related links:
            * https://github.com/ivadomed/pipeline-hemis/issues/3.
            * https://github.com/spinalcordtoolbox/spinalcordtoolbox/issues/3075
    """
    fname_mask = str(tmp_path / 'mask_t2.nii.gz')
    fname_t2 = sct_test_path('t2', 't2.nii.gz')
    fname_t1 = sct_test_path('t1', 't1w.nii.gz')
    fname_warp = str(tmp_path / "warp_t1w2t2.nii.gz")

    sct_create_mask.main([
        '-i', fname_t2, '-p',
        f"centerline,{sct_test_path('t2', 't2_centerline-manual.nii.gz')}",
        '-o', fname_mask, '-f', 'gaussian'
    ])
    sct_register_multimodal.main([
        '-i', fname_t1, '-d', fname_t2, '-dseg',
        sct_test_path('t2', 't2_seg-manual.nii.gz'), '-param',
        "step=1,type=im,algo=slicereg,metric=CC", '-m', fname_mask, '-ofolder',
        str(tmp_path), '-r', '0', '-v', '2'
    ])

    # If registration was successful, the warping field should be non-empty
    assert np.any(Image(fname_warp).data)
コード例 #2
0
def gen_qc(path_qc):
    t2_image = sct_test_path('t2', 't2.nii.gz')
    t2_seg = sct_test_path('t2', 't2_seg-manual.nii.gz')
    qc.generate_qc(fname_in1=t2_image,
                   fname_seg=t2_seg,
                   path_qc=path_qc,
                   process="sct_deepseg_gm")
コード例 #3
0
def test_sct_register_multimodal_mask_files_exist(tmp_path):
    """
    Run the script without validating results.

    - TODO: Write a check that verifies the registration results.
    - TODO: Parametrize this test to add '-initwarpinv warp_anat2template.nii.gz',
            after the file is added to sct_testing_data:
            https://github.com/spinalcordtoolbox/spinalcordtoolbox/pull/3407#discussion_r646895013
    """
    fname_mask = str(tmp_path / 'mask_mt1.nii.gz')
    sct_create_mask.main([
        '-i',
        sct_test_path('mt', 'mt1.nii.gz'), '-p',
        f"centerline,{sct_test_path('mt', 'mt1_seg.nii.gz')}", '-size', '35mm',
        '-f', 'cylinder', '-o', fname_mask
    ])
    sct_register_multimodal.main([
        '-i',
        sct_dir_local_path('data/PAM50/template/', 'PAM50_t2.nii.gz'), '-iseg',
        sct_dir_local_path('data/PAM50/template/', 'PAM50_cord.nii.gz'), '-d',
        sct_test_path('mt', 'mt1.nii.gz'), '-dseg',
        sct_test_path('mt', 'mt1_seg.nii.gz'), '-param',
        'step=1,type=seg,algo=centermass:step=2,type=seg,algo=bsplinesyn,slicewise=1,iter=3',
        '-m', fname_mask, '-initwarp',
        sct_test_path('t2', 'warp_template2anat.nii.gz'), '-ofolder',
        str(tmp_path)
    ])

    for path in ["PAM50_t2_reg.nii.gz", "warp_PAM50_t22mt1.nii.gz"]:
        assert os.path.exists(tmp_path / path)

    # Because `-initwarp` was specified (but `-initwarpinv` wasn't) the dest->seg files should NOT exist
    for path in ["mt1_reg.nii.gz", "warp_mt12PAM50_t2.nii.gz"]:
        assert not os.path.exists(tmp_path / path)
def dmri_single_volumes(tmp_path):
    """
    Create .nii.gz, bvals, and bvecs files for individual dMRI volumes.

    This prep is necessary because `sct_testing_data` lacks individual bvals
    and bvecs files for the `dmri_T000#.nii.gz` files, and
    sct_dmri_separate_b0_and_dwi won't generate new bvals/bvecs file either.
    """
    # Get all bvals/bvecs corresponding to individual dMRI volumes
    bvals, bvecs = read_bvals_bvecs(sct_test_path('dmri', 'bvals.txt'),
                                    sct_test_path('dmri', 'bvecs.txt'))

    fname_dmri_imgs, fname_bvals, fname_bvecs = [], [], []
    for i, (bval, bvec) in enumerate(zip(bvals, bvecs)):
        # 1. Use existing single-volume dMRI files from sct_testing_data
        fname_dmri_imgs.append(sct_test_path('dmri', f'dmri_T000{i}.nii.gz'))

        # 2. Copy bval into single-volume bvals file
        fname_bval = str(tmp_path / f'bvals_T000{i}.txt')
        fname_bvals.append(fname_bval)
        with open(fname_bval, 'w') as f:
            f.write(str(bval))

        # 3. Copy bvec into single-volume bvecs file
        fname_bvec = str(tmp_path / f'bvecs_T000{i}.txt')
        fname_bvecs.append(fname_bvec)
        with open(fname_bvec, 'w') as f:
            f.write(' '.join(map(str, bvec)))

    return fname_dmri_imgs, fname_bvals, fname_bvecs
コード例 #5
0
def test_straighten():
    """Test straightening with default params"""
    fname_t2 = sct_test_path('t2', 't2.nii.gz')  # sct_download_data -d sct_testing_data
    fname_t2_seg = sct_test_path('t2', 't2_seg-manual.nii.gz')
    sc_straight = SpinalCordStraightener(fname_t2, fname_t2_seg)
    sc_straight.accuracy_results = True
    sc_straight.straighten()
    assert sc_straight.mse_straightening < 0.8
    assert sc_straight.max_distance_straightening < 1.2
def template_lpi(tmp_path_factory):
    """Change orientation of test data template to LPI."""
    path_out = str(
        tmp_path_factory.mktemp("tmp_data") /
        'template_lpi')  # tmp_path_factory is needed for module scope
    shutil.copytree(sct_test_path('template'), path_out)
    for file in glob.glob(sct_test_path('template_lpi', 'template',
                                        '*.nii.gz')):
        nii = Image(file)
        nii.change_orientation('LPI')
        nii.save(file)
    return path_out
コード例 #7
0
def test_deep_segmentation_spinalcord(params):
    """High level segmentation API"""
    fname_im = sct_test_path('t2', 't2.nii.gz')
    fname_centerline_manual = sct_test_path('t2', 't2_centerline-manual.nii.gz')
    # Set at channels_first in test_deepseg_lesion.test_segment()
    K.set_image_data_format("channels_last")
    # Call segmentation function
    im_seg, _, _ = sct.deepseg_sc.core.deep_segmentation_spinalcord(
        Image(fname_im), params['contrast'], ctr_algo='file', ctr_file=fname_centerline_manual, brain_bool=False,
        kernel_size=params['kernel'], threshold_seg=0.5)
    assert im_seg.data.dtype == np.dtype('uint8')
    # Compare with ground-truth segmentation
    assert np.all(im_seg.data == Image(params['fname_seg_manual']).data)
コード例 #8
0
def test_sct_deepseg_sc_check_output_exists(tmp_path):
    fname_out = str(tmp_path / 'test_seg.nii.gz')
    sct_deepseg_sc.main(argv=[
        '-i',
        sct_test_path('t2', 't2.nii.gz'), '-c', 't2', '-o', fname_out
    ])
    assert os.path.isfile(fname_out)
コード例 #9
0
def test_sct_analyze_lesion_matches_expected_dummy_lesion_measurements(dummy_lesion, rtol, tmp_path):
    """Run the CLI script and verify that the lesion measurements match
    expected values."""
    # Run the analysis on the dummy lesion file
    path_lesion, expected_measurements = dummy_lesion
    sct_analyze_lesion.main(argv=['-m', path_lesion,
                                  '-s', sct_test_path("t2", "t2_seg-manual.nii.gz"),
                                  '-ofolder', str(tmp_path)])

    # Load analysis results from pickled pandas.Dataframe
    _, fname, _ = extract_fname(path_lesion)
    with open(tmp_path/f"{fname}_analyzis.pkl", 'rb') as f:
        measurements = pickle.load(f)['measures']

    # Validate analysis results
    for key, expected_value in expected_measurements.items():
        if key == 'volume [mm3]':
            np.testing.assert_equal(measurements.at[0, key], expected_value)
        else:
            # The length/diameter won't match exactly due to angle adjustment
            # from spinal cord centerline curvature
            np.testing.assert_allclose(measurements.at[0, key],
                                       expected_value, rtol=rtol)
            # The values will be adjusted according to the cos of the angle
            # between the spinal cord centerline and the S-I axis, as per:
            # https://github.com/spinalcordtoolbox/spinalcordtoolbox/pull/3681#discussion_r804822552
            if key == 'max_equivalent_diameter [mm]':
                assert measurements.at[0, key] < expected_value
            elif key == 'length [mm]':
                assert measurements.at[0, key] > expected_value
コード例 #10
0
def check_testing_data_integrity(files_checksums: Mapping[os.PathLike, str]):
    changed = []
    new = []
    missing = []

    after = []

    for root, _, files in os.walk(sct_test_path()):
        for f in files:
            fname = os.path.join(root, f)
            chksum = checksum(fname)
            after.append(fname)

            if fname not in files_checksums:
                logger.warning(
                    f"Discovered new file in sct_testing_data that didn't exist before: {(fname, chksum)}"
                )
                new.append((fname, chksum))

            elif files_checksums[fname] != chksum:
                logger.error(
                    f"Checksum mismatch for test data: {fname}. Got {chksum} instead of {files_checksums[fname]}"
                )
                changed.append((fname, chksum))

    for fname, chksum in files_checksums.items():
        if fname not in after:
            logger.error(f"Test data missing after test:a: {fname}")
            missing.append((fname, chksum))

    assert not changed
    # assert not new
    assert not missing
コード例 #11
0
def download_data(request):
    # This is a hack because the capsys fixture can't be used with
    # session scope at the moment.
    # https://github.com/pytest-dev/pytest/issues/2704#issuecomment-603387680
    capmanager = request.config.pluginmanager.getplugin("capturemanager")
    with capmanager.global_and_fixture_disabled():
        print('\nDownloading sct testing data.')
        downloader.main(['-d', 'sct_testing_data', '-o', sct_test_path()])
コード例 #12
0
def step_axial_data_in_same_space():
    """
    """
    src = sct_test_path('mt', 'mt0_seg.nii.gz')
    dest = sct_test_path('mt', 'mt1_seg.nii.gz')

    step = Paramreg(
        step='1',
        type='seg',
        algo='slicereg',
        metric='MeanSquares',
        iter='5',
    )

    cli_params = Param()
    cli_params.debug = 2

    return src, dest, step, cli_params
コード例 #13
0
def test_sct_register_to_template_non_rpi_template(tmp_path, template_lpi):
    """Test registration with option -ref subject when template is not RPI orientation, causing #3300."""
    # Run registration to template using the RPI template as input file
    sct_register_to_template.main(argv=[
        '-i',
        sct_test_path('template', 'template', 'PAM50_small_t2.nii.gz'), '-s',
        sct_test_path('template', 'template',
                      'PAM50_small_cord.nii.gz'), '-ldisc',
        sct_test_path('template', 'template', 'PAM50_small_label_disc.nii.gz'),
        '-c', 't2', '-t', template_lpi, '-ref', 'subject', '-param',
        'step=1,type=seg,algo=centermass', '-ofolder',
        str(tmp_path), '-r', '0', '-v', '2'
    ])
    img_orig = Image(
        sct_test_path('template', 'template', 'PAM50_small_t2.nii.gz'))
    img_reg = Image(str(tmp_path / 'template2anat.nii.gz'))
    # Check if both images almost overlap. If they are right-left flipped, distance should be above threshold
    assert np.linalg.norm(img_orig.data - img_reg.data) < 1
コード例 #14
0
def test_data_integrity(request):
    files_checksums = dict()
    for root, _, files in os.walk(sct_test_path()):
        for f in files:
            fname = os.path.join(root, f)
            chksum = checksum(fname)
            files_checksums[fname] = chksum

    request.addfinalizer(lambda: check_testing_data_integrity(files_checksums))
コード例 #15
0
def labeled_data_test_params(path_in=sct_test_path('t2', 't2.nii.gz'),
                             path_seg=sct_test_path('t2', 'labels.nii.gz')):
    """Generate image/label pairs for various test cases of
    test_sagittal_slice_get_center_spit."""
    im_in = Image(path_in)            # Base anatomical image
    im_seg_labeled = Image(path_seg)  # Base labeled segmentation
    assert np.count_nonzero(im_seg_labeled.data) >= 2, "Labeled segmentation image has fewer than 2 labels"

    # Create image with all but one label removed
    im_seg_one_label = im_seg_labeled.copy()
    for x, y, z in np.argwhere(im_seg_one_label.data)[1:]:
        im_seg_one_label.data[x, y, z] = 0

    # Create image with no labels
    im_seg_no_labels = im_seg_labeled.copy()
    for x, y, z in np.argwhere(im_seg_no_labels.data):
        im_seg_no_labels.data[x, y, z] = 0

    return [pytest.param(im_in, im_seg_labeled, id='multiple_labels'),
            pytest.param(im_in, im_seg_one_label, id='one_label'),
            pytest.param(im_in, im_seg_no_labels, id='no_labels')]
コード例 #16
0
def test_sct_maths_symmetrize(dim, tmp_path):
    """Run the CLI script, then verify that symmetrize properly flips and
    averages the image data."""
    path_in = sct_test_path('t2', 't2.nii.gz')
    path_out = str(tmp_path / f't2_sym_{dim}.nii.gz')
    sct_maths.main(
        argv=['-i', path_in, '-symmetrize',
              str(dim), '-o', path_out])
    im_in = Image(path_out)
    im_out = Image(path_out)
    assert np.array_equal(
        im_out.data, (im_in.data + np.flip(im_in.data, axis=int(dim))) / 2.0)
コード例 #17
0
def test_sct_register_multimodal_mask_no_checks(tmp_path):
    """Run the script without validating results.

    TODO: Write a check that verifies the registration results as part of
    https://github.com/spinalcordtoolbox/spinalcordtoolbox/pull/3246."""
    fname_mask = str(tmp_path / 'mask_mt1.nii.gz')
    sct_create_mask.main([
        '-i',
        sct_test_path('mt', 'mt1.nii.gz'), '-p',
        f"centerline,{sct_test_path('mt', 'mt1_seg.nii.gz')}", '-size', '35mm',
        '-f', 'cylinder', '-o', fname_mask
    ])
    sct_register_multimodal.main([
        '-i',
        sct_dir_local_path('data/PAM50/template/', 'PAM50_t2.nii.gz'), '-iseg',
        sct_dir_local_path('data/PAM50/template/', 'PAM50_cord.nii.gz'), '-d',
        sct_test_path('mt', 'mt1.nii.gz'), '-dseg',
        sct_test_path('mt', 'mt1_seg.nii.gz'), '-param',
        'step=1,type=seg,algo=centermass:step=2,type=seg,algo=bsplinesyn,slicewise=1,iter=3',
        '-m', fname_mask, '-initwarp',
        sct_test_path('t2', 'warp_template2anat.nii.gz')
    ])
コード例 #18
0
def test_register_step_ants_slice_regularized_registration(
        step_axial_data_in_same_space):
    src, dest, step, cli_params = step_axial_data_in_same_space

    warp_forward_out, warp_inverse_out = register_step_ants_slice_regularized_registration(
        src=src, dest=dest, step=step, metricSize='4')

    # Verify integrity of the output Tx Ty file
    txty_result = np.genfromtxt('step1TxTy_poly.csv',
                                skip_header=1,
                                delimiter=',')
    txty_groundtruth = np.genfromtxt(sct_test_path(
        'mt', 'step1TxTy_poly_groundtruth.csv'),
                                     skip_header=1,
                                     delimiter=',')
    assert txty_result == pytest.approx(txty_groundtruth, abs=1e-14)
コード例 #19
0
def test_register_step_ants_slice_regularized_registration(
        step_axial_data_in_same_space):
    src, dest, step, cli_params = step_axial_data_in_same_space

    outfiles = _, _, txty_csv_out = register_step_ants_slice_regularized_registration(
        src, dest, step, metricSize='4')

    # Verify integrity of the output Tx Ty file
    txty_result = np.genfromtxt(txty_csv_out, skip_header=1, delimiter=',')
    txty_groundtruth = np.genfromtxt(sct_test_path(
        'mt', 'step1TxTy_poly_groundtruth.csv'),
                                     skip_header=1,
                                     delimiter=',')
    assert txty_result == pytest.approx(txty_groundtruth, abs=1e-14)

    # tmp_path can't be used here because the output files are generated by isct_antsSliceRegularizedRegistration,
    # which doesn't easily allow the output filepaths to be modified. Instead, remove manually.
    for file in outfiles:
        os.unlink(file)
コード例 #20
0
def test_create_seg_mid(tmp_path):
    """Test the '-create-seg-mid' option in sct_label_utils."""
    input = sct_test_path('t2', 't2_seg-manual.nii.gz')
    output = str(tmp_path / 't2_seg_labeled.nii.gz')

    # Create a single label using the new syntax
    sct_label_utils.main(['-i', input, '-create-seg-mid', '3', '-o', output])
    output_img = Image(output)
    labels = np.argwhere(output_img.data)
    assert len(labels) == 1

    # Ensure slice coordinate of label is centered at midpoint of I-S axis
    for coord, axis, shape in zip(labels[0], output_img.orientation,
                                  Image(output).data.shape):
        if axis in ['I', 'S']:
            assert coord == round(shape / 2)

    # Old syntax for this behavior should not be allowed
    with pytest.raises(DeprecationWarning):
        sct_label_utils.main(
            ['-i', input, '-create-seg', '-1,3', '-o', output])
コード例 #21
0
def dummy_lesion(request, tmp_path):
    """Define a fake voxel lesion using the specified dimensions."""
    starting_coord, dim = request.param

    # Format the coordinates into a str argument that `-create` can accept
    coordinates = []
    for x in range(starting_coord[0], starting_coord[0] + dim[0]):
        for y in range(starting_coord[1], starting_coord[1] + dim[1]):
            for z in range(starting_coord[2], starting_coord[2] + dim[2]):
                coord = [str(x), str(y), str(z), "1"]
                coordinates.append(",".join(coord))
    create_arg = ":".join(coordinates)

    # Create the lesion mask file and output to a temporary directory
    path_ref = sct_test_path("t2", "t2.nii.gz")
    path_out = str(tmp_path/"lesion.nii.gz")
    sct_label_utils.main(argv=['-i', path_ref, '-o', path_out,
                               '-create', create_arg])

    # Compute the expected (voxel) measurements from the provided dimensions
    # NB: Actual measurements will differ slightly due to spine curvature
    measurements = {
        # NB: 'sct_analyze_lesion' treats lesions as cylinders. So:
        #   - Vertical axis: Length of the cylinder
        'length [mm]': dim[1],
        #   - Horizontal plane: Cross-sectional slices of the cylinder.
        #        Specifically, 'max_equivalent_diameter' takes the
        #        cross-sectional area of the lesion (which is computed
        #        using square voxels), then finds the diameter of an
        #        equivalent *circle* with that same area:
        #           a = pi*r^2
        #        -> a = pi*(d/2)^2
        #        -> d = 2*sqrt(a/pi)
        'max_equivalent_diameter [mm]': 2 * np.sqrt(dim[0] * dim[2] / np.pi),
        'volume [mm3]': dim[0] * dim[1] * dim[2],
    }

    return path_out, measurements
コード例 #22
0

def test_model_dict():
    """
    Make sure all fields are present in each model.
    :return:
    """
    for key, value in sct.deepseg.models.MODELS.items():
        assert('url' in value)
        assert('description' in value)
        assert('default' in value)


# noinspection 801,PyShadowingNames
@pytest.mark.parametrize('fname_image, fname_seg_manual, fname_out, task', [
    (sct_test_path('t2s', 't2s.nii.gz'),
     sct_test_path('t2s', 't2s_seg-deepseg.nii.gz'),
     't2s_seg_deepseg.nii.gz',
     'seg_sc_t2star'),
])
def test_segment_nifti(fname_image, fname_seg_manual, fname_out, task,
                       tmp_path):
    """
    Uses the locally-installed sct_testing_data
    """
    fname_out = str(tmp_path/fname_out)  # tmp_path for automatic cleanup
    sct_deepseg.main(['-i', fname_image, '-task', task, '-o', fname_out])
    # TODO: implement integrity test (for now, just checking if output segmentation file exists)
    # Make sure output file exists
    assert os.path.isfile(fname_out)
    # Compare with ground-truth segmentation
コード例 #23
0
 def setUp(self):
     self.image = msct_image.Image(sct_test_path('t2', 't2.nii.gz'))
     self.overlay = msct_image.Image(self.image)
     self.params = base.AnatomicalParams()
コード例 #24
0
from __future__ import print_function, absolute_import

import os
import pytest

from spinalcordtoolbox.utils import sct_test_path

import sct_compute_mtsat

out_mstat = "out_mtsat.nii.gz"
out_t1map = "out_t1map.nii.gz"

INPUT_PARAMS = [
    [
        '-mt',
        sct_test_path('mt', 'mt1.nii.gz'), '-pd',
        sct_test_path('mt', 'mt0.nii.gz'), '-t1',
        sct_test_path('mt', 't1w.nii.gz'), '-omtsat', out_mstat, '-ot1map',
        out_t1map
    ],
    [
        '-mt',
        sct_test_path('mt', 'mt1.nii.gz'), '-pd',
        sct_test_path('mt', 'mt0.nii.gz'), '-t1',
        sct_test_path('mt', 't1w.nii.gz'), '-omtsat', out_mstat, '-ot1map',
        out_t1map, '-trmt', '51', '-trpd', '52', '-trt1', '10', '-famt', '4',
        '-fapd', '5', '-fat1', '14'
    ],
]

コード例 #25
0
def test_sct_image_display_warp_check_output_exists():
    """Run the CLI script and check that the warp image file was created."""
    fname_in = 'warp_template2anat.nii.gz'
    fname_out = 'grid_3_resample_' + fname_in
    sct_image.main(argv=['-i', sct_test_path('t2', fname_in), '-display-warp'])
    assert os.path.exists(sct_test_path('t2', fname_out))
コード例 #26
0
def test_sct_dmri_display_bvecs_png_exists_bvec_bval_inputs():
    """Run the CLI script."""
    sct_dmri_display_bvecs.main(argv=['-bvec', sct_test_path('dmri', 'bvecs.txt'),
                                      '-bval', sct_test_path('dmri', 'bvals.txt')])
    assert os.path.exists('bvecs.png')
    os.unlink('bvecs.png')
コード例 #27
0
        'rmse': 0.3,
        'laplacian': 0.5,
        'norm': 3.6
    }, {}),
    (dummy_centerline(size_arr=(30, 20, 50), subsampling=10), {
        'median': 0,
        'rmse': 0.1,
        'laplacian': 0.5,
        'norm': 3.8
    }, {}),
]

param_optic = [
    ({
        'fname_image':
        sct_test_path('t2', 't2.nii.gz'),
        'contrast':
        't2',
        'fname_centerline-optic':
        sct_test_path('t2', 't2_centerline-optic.nii.gz')
    }),
    ({
        'fname_image': sct_test_path('t2s', 't2s.nii.gz'),
        'contrast': 't2s',
        'fname_centerline-optic':
        sct_test_path('t2s/t2s_centerline-optic.nii.gz')
    }),
    ({
        'fname_image':
        sct_test_path('dmri', 'dwi_mean.nii.gz'),
        'contrast':
コード例 #28
0
import logging
from time import time

import numpy as np
import pytest

import spinalcordtoolbox.labels as sct_labels
from spinalcordtoolbox.image import Image, zeros_like
from spinalcordtoolbox.utils import sct_test_path
from spinalcordtoolbox.types import Coordinate
from test_image import fake_3dimage, fake_3dimage2

logger = logging.getLogger(__name__)

seg_img = Image(sct_test_path('t2', 't2_seg-manual.nii.gz'))
t2_img = Image(sct_test_path('t2', 't2.nii.gz'))
labels_img = Image(sct_test_path('t2', 'labels.nii.gz'))


# TODO [AJ] investigate how to parametrize fixtures from test_image.py
# without redefining the function here
def fake_3dimage_sct2():
    """
    :return: an Image (3D) in RAS+ (aka SCT LPI) space
    shape = (1,2,3)
    """
    i = fake_3dimage2()
    img = Image(
        i.get_data(),
        hdr=i.header,
コード例 #29
0
# pytest unit tests for spinalcordtoolbox.deepseg_sc

import pytest
import numpy as np
import nibabel as nib
from keras import backend as K

import spinalcordtoolbox as sct
from spinalcordtoolbox.image import Image
import spinalcordtoolbox.deepseg_sc.core
from spinalcordtoolbox.testing.create_test_data import dummy_centerline
from spinalcordtoolbox.utils import sct_test_path

param_deepseg = [
    ({
        'fname_seg_manual': sct_test_path('t2', 't2_seg-deepseg_sc-2d.nii.gz'),
        'contrast': 't2',
        'kernel': '2d'
    }),
    ({
        'fname_seg_manual': sct_test_path('t2', 't2_seg-deepseg_sc-3d.nii.gz'),
        'contrast': 't2',
        'kernel': '3d'
    }),
]


# noinspection 801,PyShadowingNames
@pytest.mark.parametrize('params', param_deepseg)
def test_deep_segmentation_spinalcord(params):
    """High level segmentation API"""
コード例 #30
0
def test_sct_propseg_o_flag(tmp_path):
    argv = ['-i', sct_test_path('t2', 't2.nii.gz'), '-c', 't2', '-ofolder', str(tmp_path), '-o', 'test_seg.nii.gz']
    sct_propseg.main(argv)
    output_files = sorted([f for f in os.listdir(tmp_path)
                          if os.path.isfile(os.path.join(tmp_path, f))])
    assert output_files == ['t2_centerline.nii.gz', 'test_seg.nii.gz']