コード例 #1
0
def build_sentence_pair_model(cls, vocab_size, seq_length, tokens, transitions,
                     num_classes, training_mode, ground_truth_transitions_visible, vs,
                     initial_embeddings=None, project_embeddings=False, ss_mask_gen=None, ss_prob=0.0):
    """
    Construct a classifier which makes use of some hard-stack model.

    Args:
      cls: Hard stack class to use (from e.g. `spinn.fat_stack`)
      vocab_size:
      seq_length: Length of each sequence provided to the stack model
      tokens: Theano batch (integer matrix), `batch_size * seq_length`
      transitions: Theano batch (integer matrix), `batch_size * seq_length`
      num_classes: Number of output classes
      training_mode: A Theano scalar indicating whether to act as a training model
        with dropout (1.0) or to act as an eval model with rescaling (0.0).
      ground_truth_transitions_visible: A Theano scalar. If set (1.0), allow the model access
        to ground truth transitions. This can be disabled at evaluation time to force Model 1
        (or 2S) to evaluate in the Model 2 style with predicted transitions. Has no effect on Model 0.
      vs: Variable store.
    """


    # Prepare layer which performs stack element composition.
    if cls is spinn.plain_rnn.RNN:
        compose_network = partial(util.LSTMLayer,
                                      initializer=util.HeKaimingInitializer())
        embedding_projection_network = None
    elif cls is spinn.cbow.CBOW:
        compose_network = None
        embedding_projection_network = None
    else:
        if FLAGS.lstm_composition:
            compose_network = partial(util.TreeLSTMLayer,
                                      initializer=util.HeKaimingInitializer())
        else:
            assert not FLAGS.connect_tracking_comp, "Can only connect tracking and composition unit while using TreeLSTM"
            compose_network = partial(util.ReLULayer,
                                      initializer=util.HeKaimingInitializer())

        if project_embeddings:
            embedding_projection_network = util.Linear
        else:
            assert FLAGS.word_embedding_dim == FLAGS.model_dim, \
                "word_embedding_dim must equal model_dim unless a projection layer is used."
            embedding_projection_network = util.IdentityLayer

    # Split the two sentences
    premise_tokens = tokens[:, :, 0]
    hypothesis_tokens = tokens[:, :, 1]

    premise_transitions = transitions[:, :, 0]
    hypothesis_transitions = transitions[:, :, 1]

    # Build two hard stack models which scan over input sequences.
    premise_model = cls(
        FLAGS.model_dim, FLAGS.word_embedding_dim, vocab_size, seq_length,
        compose_network, embedding_projection_network, training_mode, ground_truth_transitions_visible, vs,
        predict_use_cell=FLAGS.predict_use_cell,
        use_tracking_lstm=FLAGS.use_tracking_lstm,
        tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim,
        X=premise_tokens,
        transitions=premise_transitions,
        initial_embeddings=initial_embeddings,
        embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
        ss_mask_gen=ss_mask_gen,
        ss_prob=ss_prob,
        connect_tracking_comp=FLAGS.connect_tracking_comp,
        context_sensitive_shift=FLAGS.context_sensitive_shift,
        context_sensitive_use_relu=FLAGS.context_sensitive_use_relu,
        use_attention=FLAGS.use_attention,
        initialize_hyp_tracking_state=FLAGS.initialize_hyp_tracking_state)

    premise_stack_tops = premise_model.stack_tops if FLAGS.use_attention != "None" else None
    premise_tracking_c_state_final = premise_model.tracking_c_state_final if cls not in [spinn.plain_rnn.RNN, 
                                                                                            spinn.cbow.CBOW] else None
    hypothesis_model = cls(
        FLAGS.model_dim, FLAGS.word_embedding_dim, vocab_size, seq_length,
        compose_network, embedding_projection_network, training_mode, ground_truth_transitions_visible, vs,
        predict_use_cell=FLAGS.predict_use_cell,
        use_tracking_lstm=FLAGS.use_tracking_lstm,
        tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim,
        X=hypothesis_tokens,
        transitions=hypothesis_transitions,
        initial_embeddings=initial_embeddings,
        embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
        ss_mask_gen=ss_mask_gen,
        ss_prob=ss_prob,
        connect_tracking_comp=FLAGS.connect_tracking_comp,
        context_sensitive_shift=FLAGS.context_sensitive_shift,
        context_sensitive_use_relu=FLAGS.context_sensitive_use_relu,
        use_attention=FLAGS.use_attention,
        premise_stack_tops=premise_stack_tops,
        is_hypothesis=True,
        initialize_hyp_tracking_state=FLAGS.initialize_hyp_tracking_state,
        premise_tracking_c_state_final=premise_tracking_c_state_final)

    # Extract top element of final stack timestep.
    if FLAGS.use_attention == "None" or FLAGS.use_difference_feature or FLAGS.use_product_feature:
        premise_vector = premise_model.final_representations
        hypothesis_vector = hypothesis_model.final_representations

        if (FLAGS.lstm_composition and cls is not spinn.cbow.CBOW) or cls is spinn.plain_rnn.RNN:
            premise_vector = premise_vector[:,:FLAGS.model_dim / 2].reshape((-1, FLAGS.model_dim / 2))
            hypothesis_vector = hypothesis_vector[:,:FLAGS.model_dim / 2].reshape((-1, FLAGS.model_dim / 2))
            sentence_vector_dim = FLAGS.model_dim / 2
        else:
            premise_vector = premise_vector.reshape((-1, FLAGS.model_dim))
            hypothesis_vector = hypothesis_vector.reshape((-1, FLAGS.model_dim))
            sentence_vector_dim = FLAGS.model_dim

    if FLAGS.use_attention != "None":
        # Use the attention weighted representation
        h_dim = FLAGS.model_dim / 2
        mlp_input = hypothesis_model.final_weighed_representation.reshape((-1, h_dim))
        mlp_input_dim = h_dim
    else:
        # Create standard MLP features
        mlp_input = T.concatenate([premise_vector, hypothesis_vector], axis=1)
        mlp_input_dim = 2 * sentence_vector_dim

    if FLAGS.use_difference_feature:
        mlp_input = T.concatenate([mlp_input, premise_vector - hypothesis_vector], axis=1)
        mlp_input_dim += sentence_vector_dim

    if FLAGS.use_product_feature:
        mlp_input = T.concatenate([mlp_input, premise_vector * hypothesis_vector], axis=1)
        mlp_input_dim += sentence_vector_dim

    mlp_input = util.BatchNorm(mlp_input, mlp_input_dim, vs, "sentence_vectors", training_mode)
    mlp_input = util.Dropout(mlp_input, FLAGS.semantic_classifier_keep_rate, training_mode)

    if FLAGS.classifier_type == "ResNet":
        features = util.Linear(
            mlp_input, mlp_input_dim, FLAGS.sentence_pair_combination_layer_dim, vs,
            name="resnet/linear", use_bias=True)
        features_dim = FLAGS.sentence_pair_combination_layer_dim

        for layer in range(FLAGS.num_sentence_pair_combination_layers):
            features = util.HeKaimingResidualLayerSet(features, features_dim, vs, training_mode, name="resnet/" + str(layer), 
                dropout_keep_rate=FLAGS.semantic_classifier_keep_rate, depth=FLAGS.resnet_unit_depth, 
                initializer=util.HeKaimingInitializer())
            features = util.BatchNorm(features, features_dim, vs, "combining_mlp/" + str(layer), training_mode)
            features = util.Dropout(features, FLAGS.semantic_classifier_keep_rate, training_mode)
    elif FLAGS.classifier_type == "Highway":
        features = util.Linear(
            mlp_input, mlp_input_dim, FLAGS.sentence_pair_combination_layer_dim, vs,
            name="resnet/linear", use_bias=True)
        features_dim = FLAGS.sentence_pair_combination_layer_dim

        for layer in range(FLAGS.num_sentence_pair_combination_layers):
            features = util.HighwayLayer(features, features_dim, vs, training_mode, name="highway/" + str(layer), 
                dropout_keep_rate=FLAGS.semantic_classifier_keep_rate,
                initializer=util.HeKaimingInitializer())
            features = util.BatchNorm(features, features_dim, vs, "combining_mlp/" + str(layer), training_mode)
            features = util.Dropout(features, FLAGS.semantic_classifier_keep_rate, training_mode)
    else:    
        # Apply a combining MLP
        features = mlp_input
        features_dim = mlp_input_dim
        for layer in range(FLAGS.num_sentence_pair_combination_layers):
            features = util.ReLULayer(features, features_dim, FLAGS.sentence_pair_combination_layer_dim, vs,
                name="combining_mlp/" + str(layer),
                initializer=util.HeKaimingInitializer())
            features_dim = FLAGS.sentence_pair_combination_layer_dim

            features = util.BatchNorm(features, features_dim, vs, "combining_mlp/" + str(layer), training_mode)
            features = util.Dropout(features, FLAGS.semantic_classifier_keep_rate, training_mode) 

    # Feed forward through a single output layer
    logits = util.Linear(
        features, features_dim, num_classes, vs,
        name="semantic_classifier", use_bias=True)

    return premise_model.transitions_pred, hypothesis_model.transitions_pred, logits
コード例 #2
0
def build_sentence_model(cls, vocab_size, seq_length, tokens, transitions,
                         num_classes, training_mode, ground_truth_transitions_visible, vs,
                         initial_embeddings=None, project_embeddings=False, ss_mask_gen=None, ss_prob=0.0):
    """
    Construct a classifier which makes use of some hard-stack model.

    Args:
      cls: Hard stack class to use (from e.g. `spinn.fat_stack`)
      vocab_size:
      seq_length: Length of each sequence provided to the stack model
      tokens: Theano batch (integer matrix), `batch_size * seq_length`
      transitions: Theano batch (integer matrix), `batch_size * seq_length`
      num_classes: Number of output classes
      training_mode: A Theano scalar indicating whether to act as a training model
        with dropout (1.0) or to act as an eval model with rescaling (0.0).
      ground_truth_transitions_visible: A Theano scalar. If set (1.0), allow the model access
        to ground truth transitions. This can be disabled at evaluation time to force Model 1
        (or 2S) to evaluate in the Model 2 style with predicted transitions. Has no effect on Model 0.
      vs: Variable store.
    """

    # Prepare layer which performs stack element composition.
    if cls is spinn.plain_rnn.RNN:
        compose_network = partial(util.LSTMLayer,
                                      initializer=util.HeKaimingInitializer())
        embedding_projection_network = None
    elif cls is spinn.cbow.CBOW:
        compose_network = None
        embedding_projection_network = None
    else:
        if FLAGS.lstm_composition:
            compose_network = partial(util.TreeLSTMLayer,
                                      initializer=util.HeKaimingInitializer())
        else:
            assert not FLAGS.connect_tracking_comp, "Can only connect tracking and composition unit while using TreeLSTM"
            compose_network = partial(util.ReLULayer,
                                      initializer=util.HeKaimingInitializer())

        if project_embeddings:
            embedding_projection_network = util.Linear
        else:
            assert FLAGS.word_embedding_dim == FLAGS.model_dim, \
                "word_embedding_dim must equal model_dim unless a projection layer is used."
            embedding_projection_network = util.IdentityLayer

    # Build hard stack which scans over input sequence.
    sentence_model = cls(
        FLAGS.model_dim, FLAGS.word_embedding_dim, vocab_size, seq_length,
        compose_network, embedding_projection_network, training_mode, ground_truth_transitions_visible, vs,
        predict_use_cell=FLAGS.predict_use_cell,
        use_tracking_lstm=FLAGS.use_tracking_lstm,
        tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim,
        X=tokens,
        transitions=transitions,
        initial_embeddings=initial_embeddings,
        embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
        ss_mask_gen=ss_mask_gen,
        ss_prob=ss_prob,
        connect_tracking_comp=FLAGS.connect_tracking_comp,
        context_sensitive_shift=FLAGS.context_sensitive_shift,
        context_sensitive_use_relu=FLAGS.context_sensitive_use_relu,
        use_input_batch_norm=False)

    # Extract top element of final stack timestep.
    if FLAGS.lstm_composition or cls is spinn.plain_rnn.RNN:
        sentence_vector = sentence_model.final_representations[:,:FLAGS.model_dim / 2].reshape((-1, FLAGS.model_dim / 2))
        sentence_vector_dim = FLAGS.model_dim / 2
    else:
        sentence_vector = sentence_model.final_representations.reshape((-1, FLAGS.model_dim))
        sentence_vector_dim = FLAGS.model_dim

    sentence_vector = util.BatchNorm(sentence_vector, sentence_vector_dim, vs, "sentence_vector", training_mode)
    sentence_vector = util.Dropout(sentence_vector, FLAGS.semantic_classifier_keep_rate, training_mode)

    # Feed forward through a single output layer
    logits = util.Linear(
        sentence_vector, sentence_vector_dim, num_classes, vs,
        name="semantic_classifier", use_bias=True)

    return sentence_model.transitions_pred, logits
コード例 #3
0
ファイル: classifier.py プロジェクト: vishalbelsare/spinn
def build_sentence_pair_model(cls,
                              vocab_size,
                              seq_length,
                              tokens,
                              transitions,
                              num_classes,
                              training_mode,
                              ground_truth_transitions_visible,
                              vs,
                              initial_embeddings=None,
                              project_embeddings=False,
                              ss_mask_gen=None,
                              ss_prob=0.0):
    """
    Construct a classifier which makes use of some hard-stack model.

    Args:
      cls: Hard stack class to use (from e.g. `spinn.stack`)
      vocab_size:
      seq_length: Length of each sequence provided to the stack model
      tokens: Theano batch (integer matrix), `batch_size * seq_length`
      transitions: Theano batch (integer matrix), `batch_size * seq_length`
      num_classes: Number of output classes
      training_mode: A Theano scalar indicating whether to act as a training model
        with dropout (1.0) or to act as an eval model with rescaling (0.0).
      ground_truth_transitions_visible: A Theano scalar. If set (1.0), allow the model access
        to ground truth transitions. This can be disabled at evaluation time to force Model 1
        (or 2S) to evaluate in the Model 2 style with predicted transitions. Has no effect on Model 0.
      vs: Variable store.
    """

    # Prepare layer which performs stack element composition.
    if cls is spinn.plain_rnn.RNN:
        compose_network = partial(util.LSTMLayer,
                                  initializer=util.HeKaimingInitializer())
        embedding_projection_network = None
    else:
        if FLAGS.lstm_composition:
            compose_network = partial(util.TreeLSTMLayer,
                                      initializer=util.HeKaimingInitializer())
        else:
            assert not FLAGS.connect_tracking_comp, "Can only connect tracking and composition unit while using TreeLSTM"
            compose_network = partial(util.ReLULayer,
                                      initializer=util.HeKaimingInitializer())

        if project_embeddings:
            embedding_projection_network = util.Linear
        else:
            assert FLAGS.word_embedding_dim == FLAGS.model_dim, \
                "word_embedding_dim must equal model_dim unless a projection layer is used."
            embedding_projection_network = util.IdentityLayer

    model_visible_dim = FLAGS.model_dim / 2 if FLAGS.lstm_composition else FLAGS.model_dim
    spec = util.ModelSpec(FLAGS.model_dim,
                          FLAGS.word_embedding_dim,
                          FLAGS.batch_size,
                          vocab_size,
                          seq_length,
                          model_visible_dim=model_visible_dim)

    # Split the two sentences
    premise_tokens = tokens[:, :, 0]
    hypothesis_tokens = tokens[:, :, 1]

    premise_transitions = transitions[:, :, 0]
    hypothesis_transitions = transitions[:, :, 1]

    # TODO: Check non-Model0 support.
    recurrence = cls(
        spec,
        vs,
        compose_network,
        use_context_sensitive_shift=FLAGS.context_sensitive_shift,
        context_sensitive_use_relu=FLAGS.context_sensitive_use_relu,
        use_tracking_lstm=FLAGS.use_tracking_lstm,
        tracking_lstm_hidden_dim=FLAGS.tracking_lstm_hidden_dim)

    # Build two hard stack models which scan over input sequences.
    premise_model = ThinStack(
        spec,
        recurrence,
        embedding_projection_network,
        training_mode,
        ground_truth_transitions_visible,
        vs,
        X=premise_tokens,
        transitions=premise_transitions,
        initial_embeddings=initial_embeddings,
        embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
        use_input_batch_norm=False,
        ss_mask_gen=ss_mask_gen,
        ss_prob=ss_prob,
        name="premise")

    hypothesis_model = ThinStack(
        spec,
        recurrence,
        embedding_projection_network,
        training_mode,
        ground_truth_transitions_visible,
        vs,
        X=hypothesis_tokens,
        transitions=hypothesis_transitions,
        initial_embeddings=initial_embeddings,
        embedding_dropout_keep_rate=FLAGS.embedding_keep_rate,
        use_input_batch_norm=False,
        ss_mask_gen=ss_mask_gen,
        ss_prob=ss_prob,
        name="hypothesis")

    # Create standard MLP features
    mlp_input = T.concatenate([premise_vector, hypothesis_vector], axis=1)
    mlp_input_dim = 2 * sentence_vector_dim

    if FLAGS.use_difference_feature:
        mlp_input = T.concatenate(
            [mlp_input, premise_vector - hypothesis_vector], axis=1)
        mlp_input_dim += sentence_vector_dim

    if FLAGS.use_product_feature:
        mlp_input = T.concatenate(
            [mlp_input, premise_vector * hypothesis_vector], axis=1)
        mlp_input_dim += sentence_vector_dim

    mlp_input = util.BatchNorm(mlp_input, mlp_input_dim, vs,
                               "sentence_vectors", training_mode)
    mlp_input = util.Dropout(mlp_input, FLAGS.semantic_classifier_keep_rate,
                             training_mode)

    # Apply a combining MLP
    prev_features = mlp_input
    prev_features_dim = mlp_input_dim
    for layer in range(FLAGS.num_sentence_pair_combination_layers):
        prev_features = util.ReLULayer(
            prev_features,
            prev_features_dim,
            FLAGS.sentence_pair_combination_layer_dim,
            vs,
            name="combining_mlp/" + str(layer),
            initializer=util.HeKaimingInitializer())
        prev_features_dim = FLAGS.sentence_pair_combination_layer_dim

        prev_features = util.BatchNorm(prev_features, prev_features_dim, vs,
                                       "combining_mlp/" + str(layer),
                                       training_mode)
        prev_features = util.Dropout(prev_features,
                                     FLAGS.semantic_classifier_keep_rate,
                                     training_mode)

    # Feed forward through a single output layer
    logits = util.Linear(prev_features,
                         prev_features_dim,
                         num_classes,
                         vs,
                         name="semantic_classifier",
                         use_bias=True)

    def zero_fn():
        premise_model.zero()
        hypothesis_model.zero()

    return premise_model, hypothesis_model, logits, zero_fn