コード例 #1
0
def my_td3(env_fn,
           seed=0,
           steps_per_epoch=4000,
           epochs=100,
           max_ep_len=1000,
           hidden_sizes=[256, 256],
           logger_kwargs=dict(),
           save_freq=1,
           batch_size=100,
           start_steps=10000,
           update_after=1000,
           update_every=50,
           num_test_episodes=10,
           gamma=0.99,
           polyak=0.995,
           act_noise=0.1,
           pi_lr=1e-3,
           q_lr=1e-3,
           buffer_size=int(1e6),
           target_noise=0.2,
           noise_clip=0.5,
           policy_delay=2):
    """
    My TD3 implementation
    """

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    test_env = env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]
    print("env.observation_space", env.observation_space)
    print("env.observation_space.shape", env.observation_space.shape)
    print("env.action_space", env.action_space)
    action_min = env.action_space.low[0]
    action_max = env.action_space.high[0]
    if isinstance(env.action_space, gym.spaces.Discrete):
        print("Discrete action space not supported for my_td3!")
        return

    # Set up experience buffer
    buf = ReplayBuffer(obs_dim, act_dim, buffer_size)

    # Instantiate models
    assert action_max == abs(action_min)
    policy = DeterministicPolicyNet(obs_dim, act_dim, hidden_sizes, action_max)
    policy_target = copy.deepcopy(policy)
    policy_optimizer = torch.optim.Adam(policy.mu_net.parameters(), lr=pi_lr)

    # Two Q-functions for Double Q Learning
    q_function_1 = QNet(obs_dim, act_dim, hidden_sizes)
    q_function_target_1 = copy.deepcopy(q_function_1)
    q_optimizer_1 = torch.optim.Adam(q_function_1.q_net.parameters(), lr=q_lr)
    q_function_2 = QNet(obs_dim, act_dim, hidden_sizes)
    q_function_target_2 = copy.deepcopy(q_function_2)
    q_optimizer_2 = torch.optim.Adam(q_function_2.q_net.parameters(), lr=q_lr)

    # Set up model saving
    logger.setup_pytorch_saver(policy)
    # TODO: Save value network as well

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p_targ in policy_target.parameters():
        p_targ.requires_grad = False
    for q_targ in q_function_target_1.parameters():
        q_targ.requires_grad = False
    for q_targ in q_function_target_2.parameters():
        q_targ.requires_grad = False

    # Prepare for interaction with environment
    num_steps = epochs * steps_per_epoch
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for step in range(
            num_steps
    ):  # TODO: Change to for loop over range(epochs) and range(steps_per_epoch)

        with torch.no_grad():
            if step < start_steps:
                # Until start_steps have elapsed, randomly sample actions
                # from a uniform distribution for better exploration. Afterwards,
                # use the learned policy (with some noise, via act_noise).
                a = env.action_space.sample()
            else:
                assert o.shape == (obs_dim, )
                a = policy(torch.tensor(o, dtype=torch.float32).unsqueeze(0))
                assert a.shape == (1, act_dim)
                a = a[0]  # Remove batch dimension
                a = torch.clamp(a + act_noise * torch.randn(act_dim),
                                action_min,
                                action_max)  # Add exploration noise
                a = a.numpy()  # Convert to numpy

            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # Ignore the "done" signal if it comes from hitting the time
            # horizon (that is, when it's an artificial terminal signal
            # that isn't based on the agent's state)
            d = False if ep_len == max_ep_len else d

            buf.store(o, a, r, next_o, d)

            # Update obs (critical!)
            o = next_o

            # Trajectory finished
            if d or (ep_len == max_ep_len):
                logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        if step >= update_after and step % update_every == 0:
            for j in range(update_every):

                def update():
                    o, a, r, next_o, d = buf.sample_batch(batch_size)

                    # Compute targets
                    with torch.no_grad():
                        next_a_targ = policy_target(next_o)
                        # TD3 modification 1: Target policy smoothing
                        eps = torch.clamp(
                            torch.randn_like(next_a_targ) * target_noise,
                            -noise_clip, noise_clip)
                        next_a_targ = torch.clamp(next_a_targ + eps,
                                                  action_min, action_max)

                        # Clipped Double Q-Learning
                        next_q_targ_1 = q_function_target_1(
                            next_o, next_a_targ)
                        next_q_targ_2 = q_function_target_2(
                            next_o, next_a_targ)
                        next_q_targ = torch.min(next_q_targ_1, next_q_targ_2)
                        q_targ_1 = r + gamma * (1 - d) * next_q_targ
                        q_targ_2 = r + gamma * (1 - d) * next_q_targ

                    # Update Q functions
                    q_optimizer_1.zero_grad()
                    q_loss_1 = ((q_function_1(o, a) - q_targ_1)**2).mean()
                    q_loss_1.backward()
                    q_optimizer_1.step()

                    q_optimizer_2.zero_grad()
                    q_loss_2 = ((q_function_2(o, a) - q_targ_2)**2).mean()
                    q_loss_2.backward()
                    q_optimizer_2.step()

                    # Delayed policy updates
                    if j % policy_delay == 0:

                        # Freeze Q-network so you don't waste computational effort
                        # computing gradients for it during the policy learning step.
                        for p in q_function_1.parameters():
                            p.requires_grad = False
                        for p in q_function_2.parameters():
                            p.requires_grad = False

                        # Policy function update
                        policy_optimizer.zero_grad()
                        policy_loss = -(q_function_1(o, policy(o))).mean()
                        policy_loss.backward()
                        policy_optimizer.step()

                        # Unfreeze Q-network so you can optimize it at next DDPG step.
                        for p in q_function_1.parameters():
                            p.requires_grad = True
                        for p in q_function_2.parameters():
                            p.requires_grad = True

                        # Update target networks with polyak
                        with torch.no_grad():
                            for p, p_targ in zip(policy.parameters(),
                                                 policy_target.parameters()):
                                p_targ.data.mul_(polyak)
                                p_targ.data.add_((1 - polyak) * p.data)
                            for q, q_targ in zip(
                                    q_function_1.parameters(),
                                    q_function_target_1.parameters()):
                                q_targ.data.mul_(polyak)
                                q_targ.data.add_((1 - polyak) * q.data)
                            for q, q_targ in zip(
                                    q_function_2.parameters(),
                                    q_function_target_2.parameters()):
                                q_targ.data.mul_(polyak)
                                q_targ.data.add_((1 - polyak) * q.data)

                update()

        if (step + 1) % steps_per_epoch == 0:
            epoch = (step + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            def test_agent():
                with torch.no_grad():
                    for j in range(num_test_episodes):
                        o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
                        while not (d or (ep_len == max_ep_len)):
                            # Take deterministic actions at test time
                            a = policy(
                                torch.tensor(o,
                                             dtype=torch.float32).unsqueeze(0))
                            assert a.shape == (1, act_dim)
                            a = a[0]  # Remove batch dimension
                            a = a.numpy()  # Convert to numpy
                            o, r, d, _ = test_env.step(a)
                            ep_ret += r
                            ep_len += 1
                        logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', step)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #2
0
ファイル: egl.py プロジェクト: eladsar/spinningup
def egl(env_fn,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=100,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        lr=1e-3,
        alpha=0.2,
        batch_size=256,
        start_steps=10000,
        update_after=1000,
        update_every=50,
        num_test_episodes=10,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=1,
        eps=0.4,
        n_explore=32,
        device='cuda',
        architecture='mlp',
        sample='on_policy'):
    """
    Soft Actor-Critic (SAC)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act`` 
            method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
            The ``act`` method and ``pi`` module should accept batches of 
            observations as inputs, and ``q1`` and ``q2`` should accept a batch 
            of observations and a batch of actions as inputs. When called, 
            ``act``, ``q1``, and ``q2`` should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``q1``       (batch,)          | Tensor containing one current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ``q2``       (batch,)          | Tensor containing the other current 
                                           | estimate of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

            Calling ``pi`` should return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``logp_pi``  (batch,)          | Tensor containing log probabilities of
                                           | actions in ``a``. Importantly: gradients
                                           | should be able to flow back into ``a``.
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to SAC.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to 
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    if architecture == 'mlp':
        actor_critic = core.MLPActorCritic
    elif architecture == 'spline':
        actor_critic = core.SplineActorCritic
    else:
        raise NotImplementedError

    device = torch.device(device)
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space,
                      **ac_kwargs).to(device)
    ac_targ = deepcopy(ac)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size,
                                 device=device)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(
        core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2, ac.geps])
    logger.log(
        '\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d, \t geps: %d\n'
        % var_counts)

    n_samples = 100
    cmin = 0.25
    cmax = 1.75
    greed = 0.01
    rand = 0.01

    def max_reroute(o):

        b, _ = o.shape
        o = repeat_and_reshape(o, n_samples)
        with torch.no_grad():
            ai, _ = ac.pi(o)

            q1 = ac.q1(o, ai)
            q2 = ac.q2(o, ai)
            qi = torch.min(q1, q2).unsqueeze(-1)

        qi = qi.view(n_samples, b, 1)
        ai = ai.view(n_samples, b, act_dim)
        rank = torch.argsort(torch.argsort(qi, dim=0, descending=True),
                             dim=0,
                             descending=False)
        w = cmin * torch.ones_like(ai)
        m = int((1 - cmin) * n_samples / (cmax - cmin))

        w += (cmax - cmin) * (rank < m).float()
        w += ((1 - cmin) * n_samples - m * (cmax - cmin)) * (rank == m).float()

        w -= greed
        w += greed * n_samples * (rank == 0).float()

        w = w * (1 - rand) + rand

        w = w / w.sum(dim=0, keepdim=True)

        prob = torch.distributions.Categorical(probs=w.permute(1, 2, 0))

        a = torch.gather(ai.permute(1, 2, 0), 2,
                         prob.sample().unsqueeze(2)).squeeze(2)

        return a, (ai, w.mean(-1))

    # Set up function for computing SAC Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        q1 = ac.q1(o, a)
        q2 = ac.q2(o, a)

        # Bellman backup for Q functions
        with torch.no_grad():
            # Target actions come from *current* policy
            a2, logp_a2 = ac.pi(o2)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            backup = r + gamma * (1 - d) * (q_pi_targ - alpha * logp_a2)

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup)**2).mean()
        loss_q2 = ((q2 - backup)**2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        q_info = dict(Q1Vals=q1.detach().cpu().numpy(),
                      Q2Vals=q2.detach().cpu().numpy())

        return loss_q, q_info

    # # Set up function for computing EGL mean-gradient-losses
    # def compute_loss_g(data):
    #
    #     o, a1, r, o_tag, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']
    #
    #     a2 = ball_explore(a1, n_explore, eps)
    #
    #     a2 = a2.view(n_explore * len(r), act_dim)
    #     o_expand = repeat_and_reshape(o, n_explore)
    #
    #     # Bellman backup for Q functions
    #     with torch.no_grad():
    #
    #         q1 = ac.q1(o_expand, a2)
    #         q2 = ac.q2(o_expand, a2)
    #         q_dither = torch.min(q1, q2)
    #
    #         # Target actions come from *current* policy
    #         a_tag, logp_a_tag = ac.pi(o_tag)
    #
    #         # Target Q-values
    #         q1_pi_targ = ac_targ.q1(o_tag, a_tag)
    #         q2_pi_targ = ac_targ.q2(o_tag, a_tag)
    #         q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
    #         q_anchor = r + gamma * (1 - d) * (q_pi_targ - alpha * logp_a_tag)
    #
    #         q_anchor = repeat_and_reshape(q_anchor, n_explore).squeeze(-1)
    #
    #     geps = ac.geps(o, a1)
    #     geps = repeat_and_reshape(geps, n_explore)
    #     a1 = repeat_and_reshape(a1, n_explore)
    #
    #     geps = (geps * (a2 - a1)).sum(-1)
    #     # l1 loss against Bellman backup
    #
    #     loss_g = F.smooth_l1_loss(geps, q_dither - q_anchor)
    #
    #     # Useful info for logging
    #     g_info = dict(GVals=geps.flatten().detach().cpu().numpy())
    #
    #     return loss_g, g_info

    # Set up function for computing EGL mean-gradient-losses
    def compute_loss_g(data):
        o, a1, r, o_tag, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        a2 = ball_explore(a1, n_explore, eps)

        a2 = a2.view(n_explore * len(r), act_dim)
        o_expand = repeat_and_reshape(o, n_explore)

        # Bellman backup for Q functions
        with torch.no_grad():
            q1 = ac.q1(o_expand, a2)
            q2 = ac.q2(o_expand, a2)
            q_dither = torch.min(q1, q2)

            # Target actions come from *current* policy

            # Target Q-values
            q1 = ac.q1(o, a1)
            q2 = ac.q2(o, a1)
            q_anchor = torch.min(q1, q2)

            q_anchor = repeat_and_reshape(q_anchor, n_explore).squeeze(-1)

        geps = ac.geps(o, a1)
        geps = repeat_and_reshape(geps, n_explore)
        a1 = repeat_and_reshape(a1, n_explore)

        geps = (geps * (a2 - a1)).sum(-1)
        # l1 loss against Bellman backup

        loss_g = F.smooth_l1_loss(geps, q_dither - q_anchor)

        # Useful info for logging
        g_info = dict(GVals=geps.flatten().detach().cpu().numpy())

        return loss_g, g_info

    # Set up function for computing SAC pi loss
    def compute_loss_pi(data):
        o = data['obs']
        pi, logp_pi = ac.pi(o)
        geps_pi = ac.geps(o, pi)

        # Entropy-regularized policy loss
        loss_pi = (alpha * logp_pi - (geps_pi * pi).sum(-1)).mean()

        beta = autograd.Variable(pi.detach().clone(), requires_grad=True)
        q1_pi = ac.q1(o, beta)
        q2_pi = ac.q2(o, beta)
        qa = torch.min(q1_pi, q2_pi).unsqueeze(-1)

        grad_q = autograd.grad(outputs=qa,
                               inputs=beta,
                               grad_outputs=torch.cuda.FloatTensor(
                                   qa.size()).fill_(1.),
                               create_graph=False,
                               retain_graph=False,
                               only_inputs=True)[0]

        # Useful info for logging
        pi_info = dict(
            LogPi=logp_pi.detach().cpu().numpy(),
            GradGAmp=torch.norm(geps_pi, dim=-1).detach().cpu().numpy(),
            GradQAmp=torch.norm(grad_q, dim=-1).detach().cpu().numpy(),
            GradDelta=torch.norm(geps_pi - grad_q,
                                 dim=-1).detach().cpu().numpy(),
            GradSim=F.cosine_similarity(geps_pi, grad_q,
                                        dim=-1).detach().cpu().numpy(),
        )

        return loss_pi, pi_info

    if architecture == 'mlp':
        # Set up optimizers for policy and q-function
        pi_optimizer = Adam(ac.pi.parameters(), lr=lr)
        q_optimizer = Adam(q_params, lr=lr)
        g_optimizer = Adam(ac.geps.parameters(), lr=lr)
    elif architecture == 'spline':
        # Set up optimizers for policy and q-function
        pi_optimizer = SparseDenseAdamOptimizer(ac.pi,
                                                dense_args={'lr': lr},
                                                sparse_args={'lr': 10 * lr})
        q_optimizer = SparseDenseAdamOptimizer([ac.q1, ac.q2],
                                               dense_args={'lr': lr},
                                               sparse_args={'lr': 10 * lr})
        g_optimizer = SparseDenseAdamOptimizer(ac.geps,
                                               dense_args={'lr': lr},
                                               sparse_args={'lr': 10 * lr})
    else:
        raise NotImplementedError

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data):

        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, q_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **q_info)

        # Next run one gradient descent step for the mean-gradient
        g_optimizer.zero_grad()
        loss_g, g_info = compute_loss_g(data)
        loss_g.backward()
        g_optimizer.step()

        # Record things
        logger.store(LossG=loss_g.item(), **g_info)

        # Freeze Q-networks so you don't waste computational effort
        # computing gradients for them during the policy learning step.
        for p in ac.geps.parameters():
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        pi_optimizer.step()

        # Unfreeze Q-networks so you can optimize it at next DDPG step.
        for p in ac.geps.parameters():
            p.requires_grad = True

        # Record things
        logger.store(LossPi=loss_pi.item(), **pi_info)

        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(polyak)
                p_targ.data.add_((1 - polyak) * p.data)

    def get_action_on_policy(o, deterministic=False):
        return ac.act(torch.as_tensor(o, dtype=torch.float32, device=device),
                      deterministic)

    def get_action_rbi(o, deterministic=False):
        o = torch.as_tensor(o, dtype=torch.float32, device=device)
        if deterministic:
            a = ac.act(o, deterministic)
        else:
            o = o.unsqueeze(0)
            a, _ = max_reroute(o)
            a = a.flatten().cpu().numpy()
        return a

    if sample == 'on_policy':
        get_action = get_action_on_policy
    elif sample == 'rbi':
        get_action = get_action_rbi
    else:
        raise NotImplementedError

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in tqdm(range(total_steps)):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy.
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch)

        # End of epoch handling
        if (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)

            logger.log_tabular('GVals', with_min_and_max=True)
            logger.log_tabular('LossG', with_min_and_max=True)
            logger.log_tabular('GradGAmp', with_min_and_max=True)
            logger.log_tabular('GradQAmp', with_min_and_max=True)
            logger.log_tabular('GradDelta', with_min_and_max=True)
            logger.log_tabular('GradSim', with_min_and_max=True)

            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #3
0
def sppo(args,
         env_fn,
         actor_critic=core.mlp_actor_critic,
         ac_kwargs=dict(),
         seed=0,
         steps_per_epoch=4000,
         epochs=50,
         gamma=0.99,
         clip_ratio=0.2,
         train_pi_iters=80,
         train_v_iters=80,
         lam=0.97,
         max_ep_len=200,
         target_kl=0.01,
         logger_kwargs=dict(),
         save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    ###########
    if args.alpha == 'auto':
        target_entropy = 0.35

        log_alpha = tf.get_variable('log_alpha',
                                    dtype=tf.float32,
                                    initializer=tf.log(0.2))
        alpha = tf.exp(log_alpha)
    else:
        alpha = args.alpha
    ###########

    # Main outputs from computation graph
    mu, pi, logp, logp_pi, v, q, h = actor_critic(alpha, x_ph, a_ph,
                                                  **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi, h]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    ######

    if args.alpha == 'auto':
        alpha_loss = tf.reduce_mean(
            -log_alpha * tf.stop_gradient(-h + target_entropy)
        )  # tf.clip_by_value(-h + target_entropy, 0.0, 1000.0 )

        alpha_optimizer = MpiAdamOptimizer(learning_rate=1e-5)
        train_alpha_op = alpha_optimizer.minimize(loss=alpha_loss,
                                                  var_list=[log_alpha])

    ######

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)

    # For PPO
    # min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph, (1 - clip_ratio) * adv_ph)
    # pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))

    # ### Scheme1: SPPO NO.2: add entropy
    # adv_logp = adv_ph - tf.stop_gradient(alpha) * tf.stop_gradient(logp)
    # min_adv = tf.where(adv_logp>0, (1+clip_ratio)*adv_logp, (1-clip_ratio)*adv_logp)
    # pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_logp, min_adv))

    # ### Scheme3: SPPO NO.3: add entropy
    # adv_logp = adv_ph - tf.stop_gradient(alpha) * logp_old_ph
    # min_adv = tf.where(adv_logp>0, (1+clip_ratio)*adv_logp, (1-clip_ratio)*adv_logp)
    # pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_logp, min_adv))

    ### Scheme2: SPPO NO.2: add entropy
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(
        tf.minimum(ratio * adv_ph, min_adv) + tf.stop_gradient(alpha) * h)

    v_loss = tf.reduce_mean((ret_ph - v)**2)  #+(ret_ph - q)**2)/2.0

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        h)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(
        learning_rate=args.pi_lr).minimize(pi_loss + 0.1 * v_loss)
    # train_v = MpiAdamOptimizer(learning_rate=args.vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Training
        for i in range(train_pi_iters):
            if args.alpha == 'auto':
                sess.run(train_alpha_op, feed_dict=inputs)
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        # for _ in range(train_v_iters):
        #     sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old),
                     Alpha=sess.run(alpha) if args.alpha == 'auto' else alpha)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t, h_t = sess.run(get_action_ops,
                                           feed_dict={x_ph: o.reshape(1, -1)})
            # q_t = sess.run(q, feed_dict={x_ph: o.reshape(1,-1), a_ph: a})
            # SPPO NO.1: add entropy
            # rh = r - args.alpha * logp_t
            if args.alpha == 'auto':
                rh = r + sess.run(alpha) * h_t
            else:
                rh = r + alpha * h_t  # exact entropy

            # save and log
            buf.store(o, a, rh, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r

            ep_len += 1
            # d = False if ep_len == max_ep_len else d

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # # Save model
        # if (epoch % save_freq == 0) or (epoch == epochs-1):
        #     logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Alpha', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
コード例 #4
0
def ppo(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Training
        for i in range(train_pi_iters):
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    maxRev = float("-inf")  #negative infinity in the beginning
    #maxRevActionSeq=[]
    maxRevTSTT = 0
    maxRevRevenue = 0
    maxRevThroughput = 0
    maxRevJAH = 0
    maxRevRemVeh = 0
    maxRevJAH2 = 0
    maxRevRMSE_MLvio = 0
    maxRevPerTimeVio = 0
    maxRevHOTDensity = pd.DataFrame()
    maxRevGPDensity = pd.DataFrame()
    maxtdJAHMax = 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            #we need to scale the sampled values of action from (-1,1) to our choices of toll coz they were sampled from tanh activation mu
            numpyFromA = np.array(a[0])
            numpyFromA = ((numpyFromA + 1.0) *
                          (env.state.tollMax - env.state.tollMin) /
                          2.0) + env.state.tollMin
            a[0] = np.ndarray.tolist(numpyFromA)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    #get other stats and store them too
                    otherStats = env.getAllOtherStats()
                    if np.any(np.isnan(np.array(otherStats))):
                        sys.exit("Nan found in statistics! Error")
                    logger.store(EpTSTT=otherStats[0],
                                 EpRevenue=otherStats[1],
                                 EpThroughput=otherStats[2],
                                 EpJAH=otherStats[3],
                                 EpRemVeh=otherStats[4],
                                 EpJAH2=otherStats[5],
                                 EpMLViolRMSE=otherStats[6],
                                 EpPerTimeVio=otherStats[7],
                                 EptdJAHMax=otherStats[8])
                    #determine max rev profile
                    if ep_ret > maxRev:
                        maxRev = ep_ret
                        maxRevActionSeq = env.state.tollProfile
                        maxRevTSTT = otherStats[0]
                        maxRevRevenue = otherStats[1]
                        maxRevThroughput = otherStats[2]
                        maxRevJAH = otherStats[3]
                        maxRevRemVeh = otherStats[4]
                        maxRevJAH2 = otherStats[5]
                        maxRevRMSE_MLvio = otherStats[6]
                        maxRevPerTimeVio = otherStats[7]
                        maxRevHOTDensity = env.getHOTDensityData()
                        maxRevGPDensity = env.getGPDensityData()
                        maxtdJAHMax = otherStats[8]
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpTSTT', average_only=True)
        logger.log_tabular('EpRevenue', average_only=True)
        logger.log_tabular('EpThroughput', average_only=True)
        logger.log_tabular('EpJAH', average_only=True)
        logger.log_tabular('EpRemVeh', average_only=True)
        logger.log_tabular('EpJAH2', average_only=True)
        logger.log_tabular('EpMLViolRMSE', average_only=True)
        logger.log_tabular('EpPerTimeVio', average_only=True)
        logger.log_tabular('EptdJAHMax', average_only=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
    print("Max cumulative reward obtained= %f " % maxRev)
    print(
        "Corresponding revenue($)= %f, TSTT(hrs)= %f, Throughput(veh)=%f, JAHstat= %f, remaining vehicles= %f, JAHstat2=%f, RMSEML_vio=%f, percentTimeViolated(%%)=%f, tdJAHMax= %f"
        %
        (maxRevRevenue, maxRevTSTT, maxRevThroughput, maxRevJAH, maxRevRemVeh,
         maxRevJAH2, maxRevRMSE_MLvio, maxRevPerTimeVio, maxtdJAHMax))
    outputVector = [
        maxRev, maxRevRevenue, maxRevTSTT, maxRevThroughput, maxRevJAH,
        maxRevRemVeh, maxRevJAH2, maxRevRMSE_MLvio, maxRevPerTimeVio,
        maxtdJAHMax
    ]
    #print("\n===Max rev action sequence is\n",maxRevActionSeq)
    exportTollProfile(maxRevActionSeq, logger_kwargs, outputVector)
    exportDensityData(maxRevHOTDensity, maxRevGPDensity, logger_kwargs)
コード例 #5
0
def vpg(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(),  seed=0, 
        steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
        vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
        logger_kwargs=dict(), save_freq=10):
    """
    Vanilla Policy Gradient 

    (with GAE-Lambda for advantage estimation)

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    # obs_dim = env.observation_space.n
    act_dim = env.action_space.shape

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing VPG policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        loss_pi = -(logp * adv).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        pi_info = dict(kl=approx_kl, ent=ent)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        # Get loss and info values before update
        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with a single step of gradient descent
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        mpi_avg_grads(ac.pi)    # average grads across MPI processes
        pi_optimizer.step()

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            
            bayes_kl_loss = 0.
            if isinstance(ac.v, BayesMLPCritic):
                bayes_kl_loss = ac.v.compute_kl()

            total_loss_v = loss_v + bayes_kl_loss / data['obs'].shape[0]
            total_loss_v.backward()
            
            mpi_avg_grads(ac.v)    # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent = pi_info['kl'], pi_info_old['ent']
        logger.store(LossPi=pi_l_old, LossV=v_l_old,
                     KL=kl, Entropy=ent,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old),
                     BayesKL=bayes_kl_loss)

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    epoch_reward = []
    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))

            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)
            
            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t==local_steps_per_epoch-1

            if terminal or epoch_ended:
                if epoch_ended and not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    epoch_reward.append(ep_ret)  
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0


        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        if epoch % 10 == 0:
            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('DeltaLossPi', average_only=True)
            logger.log_tabular('DeltaLossV', average_only=True)
            logger.log_tabular('Entropy', average_only=True)
            logger.log_tabular('KL', average_only=True)
            logger.log_tabular('BayesKL', average_only=True)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()
    
    return epoch_reward
コード例 #6
0
def vpg(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        pi_lr=3e-2,
        vf_lr=1e-3,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Policy gradient step
        sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl],
                                         feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        #logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', average_only=True)
        #logger.log_tabular('EpLen', average_only=True)
        #logger.log_tabular('VVals', with_min_and_max=True)
        #logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        #logger.log_tabular('LossPi', average_only=True)
        #logger.log_tabular('LossV', average_only=True)
        #logger.log_tabular('DeltaLossPi', average_only=True)
        #logger.log_tabular('DeltaLossV', average_only=True)
        #logger.log_tabular('Entropy', average_only=True)
        #logger.log_tabular('KL', average_only=True)
        #logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
コード例 #7
0
def vpg(env_fn, actor_critic=core.ActorCritic, ac_kwargs=dict(), seed=0,
        steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
        vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
        logger_kwargs=dict(), save_freq=10):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A reference to ActorCritic class which after instantiation
            takes an input ``x``, and action, ``a``, and returns:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a``
                                           | in states ``x``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x``. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # https://pytorch.org/docs/master/notes/randomness.html#cudnn
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape
    
    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Actor Critic model instance
    actor_critic = actor_critic(obs_dim, **ac_kwargs)
    actor_critic.to(device) # load to cpu/gpu

    # Count variables
    var_counts = tuple(core.count_vars(model) for model in [actor_critic.policy, actor_critic.value])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # Optimizers
    train_pi = optim.Adam(actor_critic.policy.parameters(), lr=pi_lr)
    train_v = optim.Adam(actor_critic.value.parameters(), lr=vf_lr)

    # Sync params across processes
    # sync_all_params() # TODO figure out the way to do use MPI for pytorch

    def update():
        actor_critic.train()
        obs, act, adv, ret, logp_old = map(lambda x: Tensor(x).to(device), buf.get())

        _ , logp, _, val = actor_critic(obs, act)

        ent = (-logp).mean()

        # VPG objectives
        pi_loss = -(logp * adv).mean()
        v_l_old = ((ret - val)**2).mean()

        # Policy gradient step
        train_pi.zero_grad()
        pi_loss.backward()
        train_pi.step()

        # Value function learning
        for _ in range(train_v_iters):
            val = actor_critic.value(obs)
            v_loss = (ret - val).pow(2).mean()
            train_v.zero_grad()
            v_loss.backward()
            train_v.step()

        actor_critic.eval()

        # Log changes from update
        _, logp, _, val = actor_critic(obs, act)
        pi_l_new = -(logp * adv).mean()
        v_l_new = ((ret - val)**2).mean()
        kl = (logp_old - logp).mean()

        logger.store(LossPi=pi_loss, LossV=v_l_old,
                     KL=kl, Entropy=ent,
                     DeltaLossPi=(pi_l_new - pi_loss),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, logp_t, logp_pi_t, v_t = actor_critic(Tensor(o.reshape(1,-1)).to(device))

            # save and log
            buf.store(o, a.cpu().numpy(), r, v_t.item(), logp_pi_t.cpu().detach().numpy())
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a.cpu().numpy())
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t==local_steps_per_epoch-1):
                if not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else actor_critic(Tensor(o.reshape(1,-1)).to(device))[-1].item()
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, actor_critic, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
コード例 #8
0
def ddpg(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=1,
         steps_per_epoch=2000, epochs=10000, replay_size=int(1e5), gamma=0.99,
         polyak=0.995, pi_lr=1e-4, q_lr=1e-4, batch_size=128, start_steps=2000,
         update_after=1000, update_every=1000, act_noise=0.05, num_test_episodes=1,
         max_ep_len=1000, logger_kwargs=dict(), save_freq=1):
    """
    Deep Deterministic Policy Gradient (DDPG)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act`` 
            method, a ``pi`` module, and a ``q`` module. The ``act`` method and
            ``pi`` module should accept batches of observations as inputs,
            and ``q`` should accept a batch of observations and a batch of 
            actions as inputs. When called, these should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``pi``       (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``q``        (batch,)          | Tensor containing the current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to DDPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float): Learning rate for policy.

        q_lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.

        act_noise (float): Stddev for Gaussian exploration noise added to 
            policy at training time. (At test time, no noise is added.)

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    rospy.init_node('DDPG_Train')
    env = env_fn()

    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]
    print(f"[DDPG] obs dim: {obs_dim} action dim: {act_dim}")

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    # ac.apply(init_weights)
    ac_targ = deepcopy(ac)
    ac.eval()  # in-active training BN
    print(f"[MODEL] Actor_Critic: {ac}")

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q])
    logger.log('\nNumber of parameters: \t pi: %d, \t q: %d\n'%var_counts)

    # Set up function for computing DDPG Q-loss
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']

        # import ipdb
        # ipdb.set_trace()
        q = ac.q(o, a)

        # Bellman backup for Q function
        with torch.no_grad():
            q_pi_targ = ac_targ.q(o2, ac_targ.pi(o2))
            backup = r + gamma * (1 - d) * q_pi_targ

        # MSE loss against Bellman backup
        loss_q = ((q - backup)**2).mean()

        # Useful info for logging
        loss_info = dict(QVals=q.cpu().detach().numpy())

        return loss_q, loss_info

    # Set up function for computing DDPG pi loss
    def compute_loss_pi(data):
        o = data['obs']
        q_pi = ac.q(o, ac.pi(o))
        return -q_pi.mean()

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    q_optimizer = Adam(ac.q.parameters(), lr=q_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data):
        # First run one gradient descent step for Q.
        q_optimizer.zero_grad()
        loss_q, loss_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Freeze Q-network so you don't waste computational effort 
        # computing gradients for it during the policy learning step.
        for p in ac.q.parameters():
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        pi_optimizer.zero_grad()
        loss_pi = compute_loss_pi(data)
        loss_pi.backward()
        pi_optimizer.step()

        # Unfreeze Q-network so you can optimize it at next DDPG step.
        for p in ac.q.parameters():
            p.requires_grad = True

        # Record things
        logger.store(LossQ=loss_q.item(), LossPi=loss_pi.item(), **loss_info)

    def soft_target_update():
        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(polyak)
                p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, noise_scale):
        o = torch.as_tensor(o, dtype=torch.float32)
        if o.dim() == 1:
            o = o.unsqueeze(0)
        a = ac.act(o)[0]
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, env.act_limit_min, env.act_limit_max)

    def test_agent():
        print("[DDPG] eval......")
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = env.reset(), False, 0, 0
            # while not(d or (ep_len == max_ep_len)):
            while not(d or (ep_len == 100)):
                # Take deterministic actions at test time (noise_scale=0)
                a = get_action(o, 0)
                print(f"[Eval] a: {a}")
                o, r, d, _ = env.step(a)
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):
        
        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards, 
        # use the learned policy (with some noise, via act_noise).

        print(f"O {o[-4]:.3f} {o[-3]:.3f} {o[-2]:.3f} {o[-1]:.3f} ")
        if t > start_steps:
            # if np.random.rand() > 0.3:
            a = get_action(o, act_noise)
            # else:
            # a = env.action_space.sample()
        else:
            a = env.action_space.sample()
        print(f't {t:7.0f} | a [{a[0]:.3f},{a[1]:.3f}]')

        # Step the env
        o2, r, d, info = env.step(a)
        # print(f"O {o[-4:]} |A {a} |O2 {o2[-4:]} |R {r} |D {d} |Info {info}")
        print(f"          ------------------> R: {r:.3f}")
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update 
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            env.pause_pedsim()
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0
            env.unpause_pedsim()


        # Update handling
        if t >= update_after and t % update_every == 0:
            env.pause_pedsim()
            ac.train()  # active training BN
            ac_targ.train()
            if torch.cuda.is_available():
                ac.cuda()
                ac_targ.cuda()
            for _ in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                if torch.cuda.is_available():
                    for key, value in batch.items():
                        batch[key] = value.cuda()
                update(data=batch)
                soft_target_update()
            ac.eval()
            ac_targ.eval()
            if torch.cuda.is_available():
                ac.cpu()
                ac_targ.cpu()
            env.unpause_pedsim()

        # End of epoch handling
        if (t+1) % steps_per_epoch == 0:
            epoch = (t+1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()
            o, d, ep_ret, ep_len = env.reset(), False, 0, 0

            sec = time.time() - start_time
            elapsed_time = str(datetime.timedelta(seconds=sec)).split('.')[0]


            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('QVals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            # logger.log_tabular('Time', time.time()-start_time)
            logger.log_tabular('Time', elapsed_time)
            logger.dump_tabular()
コード例 #9
0
ファイル: trpo.py プロジェクト: eladsar/spinningup
def trpo(env_fn,
         actor_critic=core.mlp_actor_critic,
         ac_kwargs=dict(),
         seed=0,
         steps_per_epoch=4000,
         epochs=50,
         gamma=0.99,
         delta=0.01,
         vf_lr=1e-3,
         train_v_iters=80,
         damping_coeff=0.1,
         cg_iters=10,
         backtrack_iters=10,
         backtrack_coeff=0.8,
         lam=0.97,
         max_ep_len=1000,
         logger_kwargs=dict(),
         save_freq=10,
         algo='trpo'):
    """
    Trust Region Policy Optimization 

    (with support for Natural Policy Gradient)

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ============  ================  ========================================
            Symbol        Shape             Description
            ============  ================  ========================================
            ``pi``        (batch, act_dim)  | Samples actions from policy given 
                                            | states.
            ``logp``      (batch,)          | Gives log probability, according to
                                            | the policy, of taking actions ``a_ph``
                                            | in states ``x_ph``.
            ``logp_pi``   (batch,)          | Gives log probability, according to
                                            | the policy, of the action sampled by
                                            | ``pi``.
            ``info``      N/A               | A dict of any intermediate quantities
                                            | (from calculating the policy or log 
                                            | probabilities) which are needed for
                                            | analytically computing KL divergence.
                                            | (eg sufficient statistics of the
                                            | distributions)
            ``info_phs``  N/A               | A dict of placeholders for old values
                                            | of the entries in ``info``.
            ``d_kl``      ()                | A symbol for computing the mean KL
                                            | divergence between the current policy
                                            | (``pi``) and the old policy (as 
                                            | specified by the inputs to 
                                            | ``info_phs``) over the batch of 
                                            | states given in ``x_ph``.
            ``v``         (batch,)          | Gives the value estimate for states
                                            | in ``x_ph``. (Critical: make sure 
                                            | to flatten this!)
            ============  ================  ========================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to TRPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        delta (float): KL-divergence limit for TRPO / NPG update. 
            (Should be small for stability. Values like 0.01, 0.05.)

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        damping_coeff (float): Artifact for numerical stability, should be 
            smallish. Adjusts Hessian-vector product calculation:
            
            .. math:: Hv \\rightarrow (\\alpha I + H)v

            where :math:`\\alpha` is the damping coefficient. 
            Probably don't play with this hyperparameter.

        cg_iters (int): Number of iterations of conjugate gradient to perform. 
            Increasing this will lead to a more accurate approximation
            to :math:`H^{-1} g`, and possibly slightly-improved performance,
            but at the cost of slowing things down. 

            Also probably don't play with this hyperparameter.

        backtrack_iters (int): Maximum number of steps allowed in the 
            backtracking line search. Since the line search usually doesn't 
            backtrack, and usually only steps back once when it does, this
            hyperparameter doesn't often matter.

        backtrack_coeff (float): How far back to step during backtracking line
            search. (Always between 0 and 1, usually above 0.5.)

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        algo: Either 'trpo' or 'npg': this code supports both, since they are 
            almost the same.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph, plus placeholders for old pdist (for KL)
    pi, logp, logp_pi, info, info_phs, d_kl, v = actor_critic(
        x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph
               ] + core.values_as_sorted_list(info_phs)

    # Every step, get: action, value, logprob, & info for pdist (for computing kl div)
    get_action_ops = [pi, v, logp_pi] + core.values_as_sorted_list(info)

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    info_shapes = {k: v.shape.as_list()[1:] for k, v in info_phs.items()}
    buf = GAEBuffer(obs_dim, act_dim, local_steps_per_epoch, info_shapes,
                    gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # TRPO losses
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    pi_loss = -tf.reduce_mean(ratio * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Optimizer for value function
    train_vf = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    # Symbols needed for CG solver
    pi_params = core.get_vars('pi')
    gradient = core.flat_grad(pi_loss, pi_params)
    v_ph, hvp = core.hessian_vector_product(d_kl, pi_params)
    if damping_coeff > 0:
        hvp += damping_coeff * v_ph

    # Symbols for getting and setting params
    get_pi_params = core.flat_concat(pi_params)
    set_pi_params = core.assign_params_from_flat(v_ph, pi_params)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def cg(Ax, b):
        """
        Conjugate gradient algorithm
        (see https://en.wikipedia.org/wiki/Conjugate_gradient_method)
        """
        x = np.zeros_like(b)
        r = b.copy(
        )  # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.
        p = r.copy()
        r_dot_old = np.dot(r, r)
        for _ in range(cg_iters):
            z = Ax(p)
            alpha = r_dot_old / (np.dot(p, z) + EPS)
            x += alpha * p
            r -= alpha * z
            r_dot_new = np.dot(r, r)
            p = r + (r_dot_new / r_dot_old) * p
            r_dot_old = r_dot_new
        return x

    def update():
        # Prepare hessian func, gradient eval
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        Hx = lambda x: mpi_avg(sess.run(hvp, feed_dict={**inputs, v_ph: x}))
        g, pi_l_old, v_l_old = sess.run([gradient, pi_loss, v_loss],
                                        feed_dict=inputs)
        g, pi_l_old = mpi_avg(g), mpi_avg(pi_l_old)

        # Core calculations for TRPO or NPG
        x = cg(Hx, g)
        alpha = np.sqrt(2 * delta / (np.dot(x, Hx(x)) + EPS))
        old_params = sess.run(get_pi_params)

        def set_and_eval(step):
            sess.run(set_pi_params,
                     feed_dict={v_ph: old_params - alpha * x * step})
            return mpi_avg(sess.run([d_kl, pi_loss], feed_dict=inputs))

        if algo == 'npg':
            # npg has no backtracking or hard kl constraint enforcement
            kl, pi_l_new = set_and_eval(step=1.)

        elif algo == 'trpo':
            # trpo augments npg with backtracking line search, hard kl
            for j in range(backtrack_iters):
                kl, pi_l_new = set_and_eval(step=backtrack_coeff**j)
                if kl <= delta and pi_l_new <= pi_l_old:
                    logger.log(
                        'Accepting new params at step %d of line search.' % j)
                    logger.store(BacktrackIters=j)
                    break

                if j == backtrack_iters - 1:
                    logger.log('Line search failed! Keeping old params.')
                    logger.store(BacktrackIters=j)
                    kl, pi_l_new = set_and_eval(step=0.)

        # Value function updates
        for _ in range(train_v_iters):
            sess.run(train_vf, feed_dict=inputs)
        v_l_new = sess.run(v_loss, feed_dict=inputs)

        # Log changes from update
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            agent_outs = sess.run(get_action_ops,
                                  feed_dict={x_ph: o.reshape(1, -1)})
            a, v_t, logp_t, info_t = agent_outs[0][0], agent_outs[
                1], agent_outs[2], agent_outs[3:]

            o2, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v_t, logp_t, info_t)
            logger.store(VVals=v_t)

            # Update obs (critical!)
            o = o2

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = 0 if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform TRPO or NPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('KL', average_only=True)
        if algo == 'trpo':
            logger.log_tabular('BacktrackIters', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
コード例 #10
0
def td3(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0, 
        steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99, 
        polyak=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000, 
        update_after=1000, update_every=50, act_noise=0.1, target_noise=0.2, 
        noise_clip=0.5, policy_delay=2, num_test_episodes=10, max_ep_len=1000, 
        logger_kwargs=dict(), save_freq=1):
    """
    Twin Delayed Deep Deterministic Policy Gradient (TD3)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act`` 
            method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
            The ``act`` method and ``pi`` module should accept batches of 
            observations as inputs, and ``q1`` and ``q2`` should accept a batch 
            of observations and a batch of actions as inputs. When called, 
            these should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``pi``       (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``q1``       (batch,)          | Tensor containing one current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ``q2``       (batch,)          | Tensor containing the other current 
                                           | estimate of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to TD3.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float): Learning rate for policy.

        q_lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.

        act_noise (float): Stddev for Gaussian exploration noise added to 
            policy at training time. (At test time, no noise is added.)

        target_noise (float): Stddev for smoothing noise added to target 
            policy.

        noise_clip (float): Limit for absolute value of target policy 
            smoothing noise.

        policy_delay (int): Policy will only be updated once every 
            policy_delay times for each update of the Q-networks.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac_targ = deepcopy(ac)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False
        
    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n'%var_counts)


    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space below.                     #
    #                                                                         #
    #=========================================================================#

    # Set up function for computing TD3 Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']

        # Compute target actions
        a_next = ac_targ.pi(torch.as_tensor(o2, dtype=torch.float32))
        a_next += torch.clamp(target_noise * torch.randn(act_dim), -noise_clip, noise_clip)
        a_next = torch.clamp(a_next, -act_limit, act_limit)

        # Compute targets
        q1 = ac_targ.q1(o2, a_next)
        q2 = ac_targ.q2(o2, a_next)
        y = r + gamma * (1 - d) * torch.min(q1, q2)
        
        # Loss function
        loss_q1 = ((ac.q1(o, a) - y) ** 2).mean()
        loss_q2 = ((ac.q2(o, a) - y) ** 2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        loss_info = dict(Q1Vals=q1.detach().numpy(),
                         Q2Vals=q2.detach().numpy())

        return loss_q, loss_info

    # Set up function for computing TD3 pi loss
    def compute_loss_pi(data):
        o = torch.as_tensor(data['obs'], dtype=torch.float32)
        loss_pi = -ac.q1(o, ac.pi(o)).mean() # Gradient ascent
        return loss_pi

    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space above.                     #
    #                                                                         #
    #=========================================================================#

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    q_optimizer = Adam(q_params, lr=q_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data, timer):
        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, loss_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **loss_info)

        # Possibly update pi and target networks
        if timer % policy_delay == 0:

            # Freeze Q-networks so you don't waste computational effort 
            # computing gradients for them during the policy learning step.
            for p in q_params:
                p.requires_grad = False

            # Next run one gradient descent step for pi.
            pi_optimizer.zero_grad()
            loss_pi = compute_loss_pi(data)
            loss_pi.backward()
            pi_optimizer.step()

            # Unfreeze Q-networks so you can optimize it at next DDPG step.
            for p in q_params:
                p.requires_grad = True

            # Record things
            logger.store(LossPi=loss_pi.item())

            # Finally, update target networks by polyak averaging.
            with torch.no_grad():
                for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                    # NB: We use an in-place operations "mul_", "add_" to update target
                    # params, as opposed to "mul" and "add", which would make new tensors.
                    p_targ.data.mul_(polyak)
                    p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, noise_scale):
        a = ac.act(torch.as_tensor(o, dtype=torch.float32))
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, -act_limit, act_limit)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not(d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                o, r, d, _ = test_env.step(get_action(o, 0))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):
        
        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards, 
        # use the learned policy (with some noise, via act_noise). 
        if t > start_steps:
            a = get_action(o, act_noise)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len==max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update 
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch, timer=j)

        # End of epoch handling
        if (t+1) % steps_per_epoch == 0:
            epoch = (t+1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()
コード例 #11
0
ファイル: eglu.py プロジェクト: eladsar/spinningup
def eglu(env_fn,
         actor_critic=core.MLPActorCritic,
         ac_kwargs=dict(),
         seed=0,
         steps_per_epoch=4000,
         epochs=100,
         replay_size=int(1e6),
         gamma=0.99,
         polyak=0.995,
         lr=1e-3,
         alpha=0.2,
         batch_size=256,
         start_steps=10000,
         update_after=1000,
         update_every=50,
         num_test_episodes=10,
         max_ep_len=1000,
         logger_kwargs=dict(),
         save_freq=1,
         eps=0.2,
         n_explore=32,
         device='cuda'):

    device = torch.device(device)
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space,
                      **ac_kwargs).to(device)
    ac_targ = deepcopy(ac)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size,
                                 device=device)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(
        core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' %
               var_counts)

    # Set up function for computing SAC Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        q1 = ac.q1(o, a)
        q2 = ac.q2(o, a)

        # Bellman backup for Q functions
        with torch.no_grad():
            # Target actions come from *current* policy
            a2, logp_a2 = ac.pi(o2)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            backup = r + gamma * (1 - d) * (q_pi_targ - alpha * logp_a2)

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup)**2).mean()
        loss_q2 = ((q2 - backup)**2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        q_info = dict(Q1Vals=q1.detach().cpu().numpy(),
                      Q2Vals=q2.detach().cpu().numpy())

        return loss_q, q_info

    # Set up function for computing EGL mean-gradient-losses
    def compute_loss_g(data):

        o, a1, r, o_tag, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        a2 = ball_explore(a1, n_explore, eps)

        a2 = a2.view(n_explore * len(r), act_dim)
        o_expand = repeat_and_reshape(o, n_explore)

        # Bellman backup for Q functions
        with torch.no_grad():

            q1 = ac.q1(o_expand, a2)
            q2 = ac.q2(o_expand, a2)
            q_dither = torch.min(q1, q2)

            # Target actions come from *current* policy
            a_tag, logp_a_tag = ac.pi(o_tag)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o_tag, a_tag)
            q2_pi_targ = ac_targ.q2(o_tag, a_tag)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            q_anchor = r + gamma * (1 - d) * (q_pi_targ - alpha * logp_a_tag)

            q_anchor = repeat_and_reshape(q_anchor, n_explore).squeeze(-1)

        a1_in = autograd.Variable(a1.data, requires_grad=True)
        q1 = ac.q1(o, a1_in)
        q2 = ac.q2(o, a1_in)
        qa = torch.min(q1, q2).unsqueeze(-1)
        geps = autograd.grad(outputs=qa,
                             inputs=a1_in,
                             grad_outputs=torch.cuda.FloatTensor(
                                 qa.size()).fill_(1.),
                             create_graph=False,
                             retain_graph=True,
                             only_inputs=True)[0]

        geps = repeat_and_reshape(geps, n_explore)
        a1 = repeat_and_reshape(a1, n_explore)

        geps = (geps * (a2 - a1)).sum(-1)
        # l1 loss against Bellman backup

        loss_g = F.smooth_l1_loss(geps, q_dither - q_anchor)

        # Useful info for logging
        g_info = dict(GVals=geps.flatten().detach().cpu().numpy())

        return loss_g, g_info

    # Set up function for computing SAC pi loss
    def compute_loss_pi(data):
        o = data['obs']
        pi, logp_pi = ac.pi(o)
        q1_pi = ac.q1(o, pi)
        q2_pi = ac.q2(o, pi)
        q_pi = torch.min(q1_pi, q2_pi)

        # Entropy-regularized policy loss
        loss_pi = (alpha * logp_pi - q_pi).mean()

        # Useful info for logging
        pi_info = dict(LogPi=logp_pi.detach().cpu().numpy())

        return loss_pi, pi_info

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=lr)
    q_optimizer = Adam(q_params, lr=lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data):

        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()

        # Next run one gradient descent step for the mean-gradient
        loss_g, g_info = compute_loss_g(data)
        # Record things
        logger.store(LossG=loss_g.item(), **g_info)

        q_optimizer.zero_grad()

        loss_q, q_info = compute_loss_q(data)
        # Record things
        logger.store(LossQ=loss_q.item(), **q_info)

        loss_q = loss_q + loss_g

        loss_q.backward()
        q_optimizer.step()

        # Freeze Q-networks so you don't waste computational effort
        # computing gradients for them during the policy learning step.
        for p in ac.geps.parameters():
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        pi_optimizer.step()

        # Unfreeze Q-networks so you can optimize it at next DDPG step.
        for p in ac.geps.parameters():
            p.requires_grad = True

        # Record things
        logger.store(LossPi=loss_pi.item(), **pi_info)

        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(polyak)
                p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, deterministic=False):
        return ac.act(torch.as_tensor(o, dtype=torch.float32, device=device),
                      deterministic)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for t in tqdm(range(total_steps)):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy.
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch)

        # End of epoch handling
        if (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #12
0
ファイル: ppo.py プロジェクト: h-aboutalebi/maxent
def ppo(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10,
        explorer=None,
        eps=.03,
        pretrain_epochs=0):

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Training
        for i in range(train_pi_iters):
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    total_epochs = epochs + pretrain_epochs

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(total_epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            # explore if you are in a pretrain epoch or if eps-greedy
            pre = epoch < pretrain_epochs
            during = random.random() < eps
            if pre or during:
                if explorer is None:
                    raise ValueError('Trying to explore but explorer is None')
                state = env.env.state_vector()
                a = explorer.sample_action(state)

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            o, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
コード例 #13
0
def asac(env_fn, actor_critic=core.mlp_actor_critic,
         ac_kwargs=dict(), seed=0,
         steps_per_epoch=5000, epochs=200, replay_size=int(1e6), gamma=0.99,
         polyak=0.995, lr=5e-4, alpha_start=0.2, batch_size=100, start_steps=10000,
         max_ep_len=1000, logger_kwargs=dict(), save_freq=1, loss_threshold=0.0001,
         delta=0.02, sample_step=2000):

    alpha = Alpha(alpha_start=alpha_start, delta=delta)
    alpha_t = alpha()

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    #x_ph, a_ph, x2_ph, r_ph, d_ph, ret_ph = core.placeholders(obs_dim, act_dim, obs_dim, None, None, None)
    x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim, obs_dim, None, None)
    alpha_ph = core.scale_holder()
    # Main outputs from computation graph

    #R, R_next = return_estimate(x_ph, x2_ph, **ac_kwargs)
    with tf.variable_scope('main'):
        mu, pi, logp_pi, q1, q2, q1_pi, q2_pi, v, Q, Q_pi, R = actor_critic(x_ph, a_ph, **ac_kwargs)
    # Target value network
    with tf.variable_scope('target'):
        _,_,_,_,_,_,_,v_targ, _, _, R_targ = actor_critic(x2_ph, a_ph, **ac_kwargs)

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in
                       ['main/pi', 'main/q1', 'main/q2', 'main/v', 'main/Q', 'main/R', 'main'])
    print(('\nNumber of parameters: \t pi: %d, \t' + \
           'q1: %d, \t q2: %d, \t v: %d, \t Q: %d, \t R: %d, \t total: %d\n')%var_counts)
    # Min Double-Q:
    min_q_pi = tf.minimum(q1_pi, q2_pi)

    # Targets for Q and V regression
    q_backup = tf.stop_gradient(r_ph + gamma*(1 - d_ph)*v_targ)
    v_backup = tf.stop_gradient(min_q_pi - alpha_ph *logp_pi)
    Q_backup = tf.stop_gradient(r_ph + gamma*(1 - d_ph)*R_targ)
    R_backup = tf.stop_gradient(Q_pi)
    adv = Q_pi - R

    pi_loss = tf.reduce_mean(alpha_ph * logp_pi - q1_pi)
    q1_loss = 0.5 * tf.reduce_mean((q_backup - q1) ** 2)
    q2_loss = 0.5 * tf.reduce_mean((q_backup - q2) ** 2)
    v_loss = 0.5 * tf.reduce_mean((v_backup - v)**2)
    Q_loss = 0.5*tf.reduce_mean((Q_backup - Q)**2)
    R_loss = 0.5*tf.reduce_mean((R_backup - R)**2)
    value_loss = q1_loss + q2_loss + v_loss + Q_loss + R_loss
    # Policy train op
    # (has to be separate from value train op, because q1_pi appears in pi_loss)
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi'))

    # Value train op
    # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order)
    value_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    value_params = get_vars('main/q') + get_vars('main/v') + get_vars('main/Q') + get_vars('main/R')
    with tf.control_dependencies([train_pi_op]):
        train_value_op = value_optimizer.minimize(value_loss, var_list=value_params)
    """
    R_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    train_R_op = R_optimizer.minimize(R_loss, var_list=get_vars('R'))
    """
    # Polyak averaging for target variables
    # (control flow because sess.run otherwise evaluates in nondeterministic order)
    with tf.control_dependencies([train_value_op]):
        target_update = tf.group([tf.assign(v_targ, polyak * v_targ + (1 - polyak) * v_main)
                                  for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    # All ops to call during one training step
    step_ops = [pi_loss, q1_loss, q2_loss, v_loss, q1, q2, v, logp_pi,
                train_pi_op, train_value_op, target_update, R_loss, Q_loss]

    # Initializing targets to match main variables
    target_init = tf.group([tf.assign(v_targ, v_main)
                            for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    config = tf.ConfigProto(inter_op_parallelism_threads=30,intra_op_parallelism_threads=5)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph},
                          outputs={'mu': mu, 'pi': pi, 'q1': q1, 'q2': q2, 'v': v, 'Q': Q, 'R': R})

    def get_action(o, deterministic=False):
        act_op = mu if deterministic else pi
        return sess.run(act_op, feed_dict={x_ph: o.reshape(1, -1)})

    def test_agent(n=10):
        global sess, mu, pi, q1, q2, q1_pi, q2_pi
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    ret_est = sess.run(R, feed_dict={x_ph: [o]})[0]
    total_steps = steps_per_epoch * epochs

    counter = 0
    ret_epi = []
    obs_epi = []
    loss_old = 10000
    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()
        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1
        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)
        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2
        if d or (ep_len == max_ep_len):
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            """
            for j in range(ep_len):
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {x_ph: batch['obs1'],
                             x2_ph: batch['obs2'],
                             a_ph: batch['acts'],
                             r_ph: batch['rews'],
                             d_ph: batch['done'],
                             alpha_ph: alpha_t
                            }
                outs = sess.run(step_ops, feed_dict)
                logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2],
                             LossV=outs[3], Q1Vals=outs[4], Q2Vals=outs[5],
                             VVals=outs[6], LogPi=outs[7], LossR=outs[11])
                counter += 1
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
            ret_est = sess.run(R, feed_dict={x_ph: [o]})[0]
            logger.store(RetEst=ret_est)
            if counter >= 1000:
                loss_new, _ = logger.get_stats('LossPi')
                counter = 0
                if (loss_old - loss_new)/np.absolute(loss_old) < loss_threshold and t > start_steps:
                    rho_s = np.zeros([sample_step, obs_dim], dtype=np.float32)
                    rho_ptr = 0
                    for sample_t in range(sample_step):
                        a = get_action(o)
                        o2, r, d, _ = env.step(a)
                        ep_len += 1
                        d = False if ep_len == max_ep_len else d
                        rho_s[rho_ptr] = o
                        o = o2
                        if d or (ep_len == max_ep_len):
                            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
                    advantages = sess.run(adv, feed_dict={x_ph: rho_s})
                    alpha.update_alpha(advantages)
                    #alpha.update_alpha(rho_q-rho_v)
                    alpha_t = alpha()
                    print(alpha_t)
                    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
                    loss_old = 10000
                else:
                    loss_old = loss_new
        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs - 1):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EntCoeff', alpha_t)
            logger.log_tabular('RetEst', average_only=True)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('LossR', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #14
0
ファイル: sac.py プロジェクト: yining043/SAC-discrete
def sac(env_fn, logger_kwargs=dict(), network_params=dict(), rl_params=dict()):

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # env params
    thresh          = rl_params['thresh']

    # control params
    seed            = rl_params['seed']
    epochs          = rl_params['epochs']
    steps_per_epoch = rl_params['steps_per_epoch']
    replay_size     = rl_params['replay_size']
    batch_size      = rl_params['batch_size']
    start_steps     = rl_params['start_steps']
    max_ep_len      = rl_params['max_ep_len']
    max_noop        = rl_params['max_noop']
    save_freq       = rl_params['save_freq']
    render          = rl_params['render']

    # rl params
    gamma           = rl_params['gamma']
    polyak          = rl_params['polyak']
    lr              = rl_params['lr']
    grad_clip_val   = rl_params['grad_clip_val']

    alpha                = rl_params['alpha']
    target_entropy_start = rl_params['target_entropy_start']
    target_entropy_stop  = rl_params['target_entropy_stop']
    target_entropy_steps = rl_params['target_entropy_steps']

    train_env, test_env = env_fn(), env_fn()
    obs_space = env.observation_space
    act_space = env.action_space

    tf.set_random_seed(seed)
    np.random.seed(seed)
    train_env.seed(seed)
    train_env.action_space.np_random.seed(seed)
    test_env.seed(seed)
    test_env.action_space.np_random.seed(seed)

    # get the size after resize
    obs_dim = network_params['input_dims']
    act_dim = act_space.n

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # init a state buffer for storing last m states
    train_state_buffer = StateBuffer(m=obs_dim[2])
    test_state_buffer  = StateBuffer(m=obs_dim[2])

    # Inputs to computation graph
    x_ph, a_ph, x2_ph, r_ph, d_ph = placeholders(obs_dim, act_dim, obs_dim, None, None)

    # alpha and entropy setup
    max_target_entropy = tf.log(tf.cast(act_dim, tf.float32))
    target_entropy_prop_ph =  tf.placeholder(dtype=tf.float32, shape=())
    target_entropy = max_target_entropy * target_entropy_prop_ph

    log_alpha = tf.get_variable('log_alpha', dtype=tf.float32, initializer=0.0)

    if alpha == 'auto': # auto tune alpha
        alpha = tf.exp(log_alpha)
    else: # fixed alpha
        alpha = tf.get_variable('alpha', dtype=tf.float32, initializer=alpha)

    # Main outputs from computation graph
    with tf.variable_scope('main'):
        mu, pi, logp_pi, pi_logits, q1_logits, q2_logits, q1_a, q2_a, q1_pi, q2_pi = build_models(x_ph, a_ph, act_dim, network_params)

    # Target value network
    with tf.variable_scope('target'):
        _, _, logp_pi_targ, _, _, _,  _, _, q1_pi_targ, q2_pi_targ = build_models(x2_ph, a_ph, act_dim, network_params)

    # Count variables
    var_counts = tuple(count_vars(scope) for scope in
                       ['log_alpha', 'main/pi', 'main/q1', 'main/q2', 'main'])
    print(('\nNumber of parameters: \t alpha: %d, \t pi: %d, \t' + \
           'q1: %d, \t q2: %d, \t total: %d\n')%var_counts)

    # Min Double-Q: (check the logp_pi bit)
    min_q_pi = tf.minimum(q1_pi, q2_pi)
    min_q_pi_targ = tf.minimum(q1_pi_targ, q2_pi_targ)

    # Targets for Q regression
    q_backup = r_ph + gamma*(1-d_ph)*tf.stop_gradient(min_q_pi_targ - alpha * logp_pi_targ)

    # critic losses
    q1_loss = 0.5 * tf.reduce_mean((q_backup - q1_a)**2)
    q2_loss = 0.5 * tf.reduce_mean((q_backup - q2_a)**2)
    value_loss = q1_loss + q2_loss

    # actor loss
    pi_loss = tf.reduce_mean(alpha*logp_pi - min_q_pi)

    # alpha loss for temperature parameter
    alpha_backup = tf.stop_gradient(logp_pi + target_entropy)
    alpha_loss   = -tf.reduce_mean(log_alpha * alpha_backup)

    # Policy train op
    # (has to be separate from value train op, because q1_logits appears in pi_loss)
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04)
    if grad_clip_val is not None:
        gvs = pi_optimizer.compute_gradients(pi_loss,  var_list=get_vars('main/pi'))
        capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs]
        train_pi_op = pi_optimizer.apply_gradients(capped_gvs)
    else:
        train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi'))

    # Value train op
    # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order)
    value_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04)
    with tf.control_dependencies([train_pi_op]):
        if grad_clip_val is not None:
            gvs = value_optimizer.compute_gradients(value_loss, var_list=get_vars('main/q'))
            capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs]
            train_value_op = value_optimizer.apply_gradients(capped_gvs)
        else:
            train_value_op = value_optimizer.minimize(value_loss, var_list=get_vars('main/q'))

    # Alpha train op
    alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04)
    with tf.control_dependencies([train_value_op]):
        train_alpha_op = alpha_optimizer.minimize(alpha_loss, var_list=get_vars('log_alpha'))

    # Polyak averaging for target variables
    # (control flow because sess.run otherwise evaluates in nondeterministic order)
    with tf.control_dependencies([train_value_op]):
        target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main)
                                  for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    # All ops to call during one training step
    step_ops = [pi_loss, q1_loss, q2_loss, q1_a, q2_a,
                logp_pi, target_entropy,
                alpha_loss, alpha,
                train_pi_op, train_value_op, train_alpha_op, target_update]

    # Initializing targets to match main variables
    target_init = tf.group([tf.assign(v_targ, v_main)
                              for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    sess = tf.Session(config=tf_config)
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph},
                                outputs={'mu': mu, 'pi': pi, 'q1': q1_a, 'q2': q2_a})

    def get_action(state, deterministic=False):
        state = state.astype('float32') / 255.
        act_op = mu if deterministic else pi
        return sess.run(act_op, feed_dict={x_ph: [state]})[0]

    def reset(env, state_buffer):
        o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # fire to start game and perform no-op for some frames to randomise start
        o, _, _, _ = env.step(1) # Fire action to start game
        for _ in range(np.random.randint(1, max_noop)):
                o, _, _, _ = env.step(0) # Action 'NOOP'

        o = process_image_observation(o, obs_dim, thresh)
        r = process_reward(r)
        old_lives = env.ale.lives()
        state = state_buffer.init_state(init_obs=o)
        return o, r, d, ep_ret, ep_len, old_lives, state

    def test_agent(n=10, render=True):
        global sess, mu, pi, q1, q2, q1_pi, q2_pi
        for j in range(n):
            o, r, d, ep_ret, ep_len, test_old_lives, test_state = reset(test_env, test_state_buffer)
            terminal_life_lost_test = False

            if render: test_env.render()

            while not(d or (ep_len == max_ep_len)):

                # start by firing
                if terminal_life_lost_test:
                    a = 1
                else:
                    # Take  lower variance actions at test(noise_scale=0.05)
                    a = get_action(test_state, True)

                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(a)
                o = process_image_observation(o, obs_dim, thresh)
                r = process_reward(r)
                test_state = test_state_buffer.append_state(o)
                ep_ret += r
                ep_len += 1

                if test_env.ale.lives() < test_old_lives:
                    test_old_lives = test_env.ale.lives()
                    terminal_life_lost_test = True
                else:
                    terminal_life_lost_test = False

                if render: test_env.render()

            if render: test_env.close()
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # ================== Main training Loop  ==================

    start_time = time.time()
    o, r, d, ep_ret, ep_len, old_lives, state = reset(train_env, train_state_buffer)
    total_steps = steps_per_epoch * epochs

    target_entropy_prop = linear_anneal(current_step=0, start=target_entropy_start, stop=target_entropy_stop, steps=target_entropy_steps)
    save_iter = 0
    terminal_life_lost = False

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        # press fire to start
        if terminal_life_lost:
            a = 1
        else:
            if t > start_steps:
                a = get_action(state)
            else:
                a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        o2        = process_image_observation(o2, obs_dim, thresh)
        r         = process_reward(r)
        one_hot_a = process_action(a, act_dim)

        next_state = train_state_buffer.append_state(o2)

        ep_ret += r
        ep_len += 1

        if train_env.ale.lives() < old_lives:
            old_lives = train_env.ale.lives()
            terminal_life_lost = True
        else:
            terminal_life_lost = False

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len==max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(state, one_hot_a, r, next_state, terminal_life_lost)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2
        state = next_state

        if d or (ep_len == max_ep_len):
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            """
            for j in range(ep_len):
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {x_ph:  batch['obs1'],
                             x2_ph: batch['obs2'],
                             a_ph:  batch['acts'],
                             r_ph:  batch['rews'],
                             d_ph:  batch['done'],
                             target_entropy_prop_ph: target_entropy_prop
                            }
                outs = sess.run(step_ops, feed_dict)
                logger.store(LossPi=outs[0],
                             LossQ1=outs[1],    LossQ2=outs[2],
                             Q1Vals=outs[3],    Q2Vals=outs[4],
                             LogPi=outs[5], TargEntropy=outs[6],
                             LossAlpha=outs[7], Alpha=outs[8])

            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len, old_lives, state = reset(train_env, train_state_buffer)


        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch

            # update target entropy every epoch
            target_entropy_prop = linear_anneal(current_step=t, start=target_entropy_start, stop=target_entropy_stop, steps=target_entropy_steps)

            # Save model
            if save_freq is not None:
                if (epoch % save_freq == 0) or (epoch == epochs-1):
                    print('Saving...')
                    logger.save_state({'env': env},  itr=save_iter)
                    save_iter+=1

            # Test the performance of the deterministic version of the agent.
            test_agent(n=5, render=render)

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LogPi', average_only=True)
            logger.log_tabular('TargEntropy', average_only=True)
            logger.log_tabular('Alpha', average_only=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('LossAlpha', average_only=True)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()
コード例 #15
0
ファイル: ddpg.py プロジェクト: shariqahn/UROPFall2020
class SingleTaskDDPG(Approach):
    def __init__(self,
                 action_space,
                 observation_space,
                 rng,
                 eps=0.9,
                 discount_factor=0.99,
                 alpha=1e-3):
        self.rng = rng
        logger_kwargs = setup_logger_kwargs('SingleTaskDDPG', self.rng)
        self.logger = EpochLogger(**logger_kwargs)
        self.logger.save_config(locals())

        self.actor_critic = MLPActorCritic
        # ac_kwargs=dict() ****?????*****
        # seed=0
        self.replay_size = int(1e6)
        self.polyak = 0.995
        self.gamma = discount_factor
        self.pi_lr = alpha
        self.q_lr = alpha
        self.batch_size = 100
        self.start_steps = 10000
        self.update_after = 1000
        self.update_every = 50
        self.act_noise = 0.1

        self.step_count = 0
        self.action_space = action_space
        self.observation_space = observation_space
        # self.observation_space = spaces.Box(-np.inf, np.inf, shape=(17,), dtype=np.float32) #fix

        # torch.manual_seed(seed)
        # np.random.seed(seed)

        # self.obs_dim = self.observation_space.shape
        self.act_dim = self.action_space.shape[0]
        # act_dim = self.action_space.n

        # Action limit for clamping: critically, assumes all dimensions share the same bound!
        self.act_limit = self.action_space.high[0]

        self.net = False

    def init_net(self, state):
        self.obs_dim = state.shape
        # Create actor-critic module and target networks
        self.ac = self.actor_critic(self.obs_dim[0],
                                    self.action_space)  #took out ac_kwargs
        self.ac_targ = deepcopy(self.ac)

        # Freeze target networks with respect to optimizers (only update via polyak averaging)
        for p in self.ac_targ.parameters():
            p.requires_grad = False

        # Experience buffer
        self.replay_buffer = ReplayBuffer(obs_dim=self.obs_dim,
                                          act_dim=self.act_dim,
                                          size=self.replay_size)

        # Set up optimizers for policy and q-function
        self.pi_optimizer = Adam(self.ac.pi.parameters(), lr=self.pi_lr)
        self.q_optimizer = Adam(self.ac.q.parameters(), lr=self.q_lr)
        self.logger.setup_pytorch_saver(self.ac)

        self.net = True

    def observe(self, state, action, next_state, reward, done):
        state = self.process_state(state)
        next_state = self.process_state(next_state)

        self.replay_buffer.store(state, action, reward, next_state, done)
        if self.step_count >= self.update_after and self.step_count % self.update_every == 0:
            for _ in range(self.update_every):
                batch = self.replay_buffer.sample_batch(self.batch_size)
                self.update(data=batch)

    # Set up function for computing DDPG Q-loss
    def compute_loss_q(self, data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        q = self.ac.q(o, a)

        # Bellman backup for Q function
        with torch.no_grad():
            q_pi_targ = self.ac_targ.q(o2, self.ac_targ.pi(o2))
            backup = r + self.gamma * (1 - d) * q_pi_targ

        # MSE loss against Bellman backup
        loss_q = ((q - backup)**2).mean()

        # Useful info for logging
        loss_info = dict(QVals=q.detach().numpy())

        return loss_q, loss_info

    # Set up function for computing DDPG pi loss
    def compute_loss_pi(self, data):
        o = data['obs']
        q_pi = self.ac.q(o, self.ac.pi(o))
        return -q_pi.mean()

    def update(self, data):
        # First run one gradient descent step for Q.
        self.q_optimizer.zero_grad()
        loss_q, loss_info = self.compute_loss_q(data)
        loss_q.backward()
        self.q_optimizer.step()

        # Freeze Q-network so you don't waste computational effort
        # computing gradients for it during the policy learning step.
        for p in self.ac.q.parameters():
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        self.pi_optimizer.zero_grad()
        loss_pi = self.compute_loss_pi(data)
        loss_pi.backward()
        self.pi_optimizer.step()

        # Unfreeze Q-network so you can optimize it at next DDPG step.
        for p in self.ac.q.parameters():
            p.requires_grad = True

        self.logger.store(LossQ=loss_q.item(),
                          LossPi=loss_pi.item(),
                          **loss_info)

        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(self.ac.parameters(),
                                 self.ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(self.polyak)
                p_targ.data.add_((1 - self.polyak) * p.data)

    def get_action(self, state, exploit=False):
        processed_state = self.process_state(state)
        if not self.net:
            self.init_net(processed_state)

        # state is actually observation
        self.step_count += 1
        if self.step_count <= self.start_steps:
            return self.action_space.sample()

        a = self.ac.act(torch.as_tensor(processed_state, dtype=torch.float32))
        if not exploit:
            a += self.act_noise * np.random.randn(self.act_dim)
        return np.clip(a, -self.act_limit, self.act_limit)

    def reset(self, reward_function):
        self.reward_function = reward_function
        self.net = False
        # self.step_count = 0

    def process_state(self, state):
        return state

    def log(self, returns, task):
        self.logger.store(EpRet=sum(returns), EpLen=len(returns))
        self.logger.save_state({'env': task}, None)
        self.logger.log_tabular('EpRet', with_min_and_max=True)
        self.logger.log_tabular('EpLen', average_only=True)
        self.logger.log_tabular('TotalEnvInteracts', self.step_count)
        self.logger.log_tabular('QVals', with_min_and_max=True)
        self.logger.log_tabular('LossPi', average_only=True)
        self.logger.log_tabular('LossQ', average_only=True)
        self.logger.dump_tabular()

    def load(self, file, task):
        # model = torch.load(file)
        # s = ()
        # for param_tensor in model.state_dict():
        #     s+=(param_tensor, "\t", model.state_dict()[param_tensor].size())
        # return s
        # model = self.actor_critic(17, self.action_space)
        # model.load_state_dict(torch.load(file))
        self.ac = torch.load(file)
        self.ac.eval()

        self.net = True
        state = task.reset(self.rng)
        self.reward_function = task.reward_function
        images = []

        for i in range(100):
            action = self.get_action(state, True)
            state, reward, done, _ = task.step(action)
            im = task.render(mode='rgb_array')
            images.append(im)

            if done:
                break
        imageio.mimsave('figures/DDPG/oracle.mp4', images)
コード例 #16
0
ファイル: meil-v3.py プロジェクト: johnhallman/reil-algorithm
def ppo(BASE_DIR,
        expert_density,
        env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        steps_per_epoch=1000,
        epochs=10,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=50,
        train_v_iters=50,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        data_n=10):

    data = {}  # ALL THE DATA

    logger_kwargs = setup_logger_kwargs(args.dir_name, data_dir=BASE_DIR)
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    # update rule
    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Training
        for i in range(train_pi_iters):
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    policy_distr = Gaussian_Density()
    policy = lambda s: np.random.uniform(
        -2.0, 2.0, size=env.action_space.shape)  # random policy
    policy_distr.train(env, policy, args.trajects, args.distr_gamma,
                       args.iter_length)
    density = policy_distr.density()

    data[0] = {
        'pol_s': policy_distr.num_samples,
        'pol_t': policy_distr.num_trajects
    }

    dist_rewards = []

    # repeat REIL for given number of rounds
    for i in range(args.rounds):

        message = "\nRound {} out of {}\n".format(i + 1, args.rounds)
        reward = lambda s: expert_density(s) / (density(s) + args.eps)

        dist_rewards.append(reward)

        start_time = time.time()
        o, old_r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
        r = reward(o)  # custom reward

        # Main loop: collect experience in env and update/log each epoch
        for epoch in range(epochs):
            for t in range(local_steps_per_epoch):

                a, v_t, logp_t = sess.run(get_action_ops,
                                          feed_dict={x_ph: o.reshape(1, -1)})

                # save and log
                buf.store(o, a, r, v_t, logp_t)
                logger.store(VVals=v_t)

                o, old_r, d, _ = env.step(a[0])
                r = reward(o)
                ep_ret += r
                ep_len += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal or (t == local_steps_per_epoch - 1):
                    if not (terminal):
                        print(
                            'Warning: trajectory cut off by epoch at %d steps.'
                            % ep_len)
                    # if trajectory didn't reach terminal state, bootstrap value target
                    last_val = old_r if d else sess.run(
                        v, feed_dict={x_ph: o.reshape(1, -1)})
                    last_val = reward(o)
                    buf.finish_path(last_val)
                    if terminal:
                        # only save EpRet / EpLen if trajectory finished
                        logger.store(EpRet=ep_ret, EpLen=ep_len)
                    o, old_r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
                    r = reward(o)

            # store model!
            if (epoch == epochs - 1): logger.save_state({'env': env}, None)

            # Perform PPO update!
            update()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('TotalEnvInteracts',
                               (epoch + 1) * steps_per_epoch)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('DeltaLossPi', average_only=True)
            logger.log_tabular('DeltaLossV', average_only=True)
            logger.log_tabular('Entropy', average_only=True)
            logger.log_tabular('KL', average_only=True)
            logger.log_tabular('ClipFrac', average_only=True)
            logger.log_tabular('StopIter', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
            print(message)

        policy = lambda state: sess.run(
            get_action_ops, feed_dict={x_ph: state.reshape(1, -1)})[0][0]
        data[i] = {
            'pol_s': policy_distr.num_samples,
            'pol_t': policy_distr.num_trajects
        }
        data[i]['rewards'] = evaluate_reward(env, policy, data_n)

        if i != args.rounds - 1:
            policy_distr.train(env, policy, args.trajects, args.distr_gamma,
                               args.iter_length)
            density = policy_distr.density()

    return data, dist_rewards
コード例 #17
0
def sac_overwrite(env_fn,
                  hidden_sizes=[256, 256],
                  seed=0,
                  steps_per_epoch=5000,
                  epochs=100,
                  replay_size=int(1e6),
                  gamma=0.99,
                  polyak=0.995,
                  lr=3e-4,
                  alpha=0.2,
                  batch_size=256,
                  start_steps=10000,
                  max_ep_len=1000,
                  save_freq=1,
                  dont_save=True,
                  logger_kwargs=dict(),
                  update_multiplier=1,
                  hidden_activation_setting='relu',
                  use_linear_priority=False,
                  update_order='old_first',
                  eta_0=0.994,
                  m=900,
                  c_min=5000,
                  eta_final=1.0,
                  no_eta_anneal=False):
    ## TODO eta will anneal to eta_final
    ## TODO random order update

    ## update_order can be old_first, new_first, random
    ## old first will first use data from all of buffer and then sample from a shrinking range of recent data
    ## new first is update on recent data first then gradually become uniform sampling.
    """
    Largely following OpenAI documentation
    But slightly different from tensorflow implementation
    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        hidden_sizes: number of entries is number of hidden layers
            each entry in this list indicate the size of that hidden layer.
            applies to all networks

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch. Note the epoch here is just logging epoch
            so every this many steps a logging to stdouot and also output file will happen
            note: not to be confused with training epoch which is a term used often in literature for all kinds of
            different things

        epochs (int): Number of epochs to run and train agent. Usage of this term can be different in different
            algorithms, use caution. Here every epoch you get new logs

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target
            networks. Target networks are updated towards main networks
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration. However during testing the action always come from policy

        max_ep_len (int): Maximum length of trajectory / episode / rollout. Environment will get reseted if
        timestep in an episode excedding this number

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        logger_kwargs (dict): Keyword args for EpochLogger.

    """

    if no_eta_anneal:
        eta_final = eta_0
    """set up logger"""
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    env, test_env = env_fn(), env_fn()

    ## seed torch and numpy
    torch.manual_seed(seed)
    np.random.seed(seed)

    ## seed environment along with env action space so that everything about env is seeded
    env.seed(seed)
    env.action_space.np_random.seed(seed)
    test_env.seed(seed)
    test_env.action_space.np_random.seed(seed)

    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # if environment has a smaller max episode length, then use the environment's max episode length
    max_ep_len = env._max_episode_steps if max_ep_len > env._max_episode_steps else max_ep_len

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    # we need .item() to convert it from numpy float to python float
    act_limit = env.action_space.high[0].item()

    # Experience buffer with weighted/priority sampling
    replay_buffer = StagePriorityReplayBuffer(obs_dim=obs_dim,
                                              act_dim=act_dim,
                                              size=replay_size)

    def test_agent(n=5):
        """
        This will test the agent's performance by running n episodes
        During the runs, the agent only take deterministic action, so the
        actions are not drawn from a distribution, but just use the mean
        :param n: number of episodes to run the agent
        """
        ep_return_list = np.zeros(n)
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                a = policy_net.get_env_action(o, deterministic=True)
                o, r, d, _ = test_env.step(a)
                ep_ret += r
                ep_len += 1
            ep_return_list[j] = ep_ret
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs

    hidden_activation_dictionary = {
        'relu': F.relu,
        'leaky_relu': F.leaky_relu,
        'selu': F.selu
    }
    hidden_activation = hidden_activation_dictionary[hidden_activation_setting]
    """init all networks"""
    # see line 1
    policy_net = TanhGaussianPolicy(obs_dim,
                                    act_dim,
                                    hidden_sizes,
                                    action_limit=act_limit,
                                    hidden_activation=hidden_activation)
    value_net = Mlp(obs_dim,
                    1,
                    hidden_sizes,
                    hidden_activation=hidden_activation)
    target_value_net = Mlp(obs_dim,
                           1,
                           hidden_sizes,
                           hidden_activation=hidden_activation)
    q1_net = Mlp(obs_dim + act_dim,
                 1,
                 hidden_sizes,
                 hidden_activation=hidden_activation)
    q2_net = Mlp(obs_dim + act_dim,
                 1,
                 hidden_sizes,
                 hidden_activation=hidden_activation)
    # see line 2: copy parameters from value_net to target_value_net
    target_value_net.load_state_dict(value_net.state_dict())

    # set up optimizers
    policy_optimizer = optim.Adam(policy_net.parameters(), lr=lr)
    value_optimizer = optim.Adam(value_net.parameters(), lr=lr)
    q1_optimizer = optim.Adam(q1_net.parameters(), lr=lr)
    q2_optimizer = optim.Adam(q2_net.parameters(), lr=lr)

    # mean squared error loss for v and q networks
    mse_criterion = nn.MSELoss()

    # Main loop: collect experience in env and update/log each epoch
    # NOTE: t here is the current number of total timesteps used
    # it is not the number of timesteps passed in the current episode
    for t in range(total_steps):
        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t > start_steps:
            a = policy_net.get_env_action(o, deterministic=False)
        else:
            a = env.action_space.sample()

        # Step the env, get next observation, reward and done signal
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience (observation, action, reward, next observation, done) to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2
        if d or (ep_len == max_ep_len):
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            Quoted from the original SAC paper: 'In practice, we take a single environment step
            followed by one or several gradient step' after a single environment step,
            the number of gradient steps is 1 for SAC. (see paper for reference)
            """
            ## first compute the current eta,
            eta_current = compute_current_eta(eta_0, eta_final, t, total_steps)
            num_updates = ep_len

            ck_list = get_ck_list_exp(replay_size, num_updates, eta_current,
                                      update_order)

            for k in range(num_updates):
                """
                first get priority count c_k, and we only uniformly sample from the most recent
                c_k data points in the replay buffer
                """
                c_k = ck_list[k]
                if c_k < c_min:
                    c_k = c_min
                # get data from replay buffer
                batch = replay_buffer.sample_priority_only_batch(
                    c_k, batch_size)
                obs_tensor = Tensor(batch['obs1'])
                obs_next_tensor = Tensor(batch['obs2'])
                acts_tensor = Tensor(batch['acts'])
                # unsqueeze is to make sure rewards and done tensors are of the shape nx1, instead of n
                # to prevent problems later
                rews_tensor = Tensor(batch['rews']).unsqueeze(1)
                done_tensor = Tensor(batch['done']).unsqueeze(1)
                """
                now we do a SAC update, following the OpenAI spinup doc
                check the openai sac document psudocode part for reference
                line nubmers indicate lines in psudocode part
                we will first compute each of the losses
                and then update all the networks in the end
                """
                # see line 12: get a_tilda, which is newly sampled action (not action from replay buffer)
                a_tilda, mean_a_tilda, log_std_a_tilda, log_prob_a_tilda, _, _ = policy_net.forward(
                    obs_tensor)
                """get q loss"""
                # see line 12: first equation
                v_from_target_v_net = target_value_net(obs_next_tensor)
                y_q = rews_tensor + gamma * (1 -
                                             done_tensor) * v_from_target_v_net
                # see line 13: compute loss for the 2 q networks, note that we want to detach the y_q value
                # since we only want to update q networks here, and don't want other gradients
                q1_prediction = q1_net(torch.cat([obs_tensor, acts_tensor], 1))
                q1_loss = mse_criterion(q1_prediction, y_q.detach())
                q2_prediction = q2_net(torch.cat([obs_tensor, acts_tensor], 1))
                q2_loss = mse_criterion(q2_prediction, y_q.detach())
                """get v loss"""
                # see line 12: second equation
                q1_a_tilda = q1_net(torch.cat([obs_tensor, a_tilda], 1))
                q2_a_tilda = q2_net(torch.cat([obs_tensor, a_tilda], 1))
                min_q1_q2_a_tilda = torch.min(
                    torch.cat([q1_a_tilda, q2_a_tilda], 1),
                    1)[0].reshape(-1, 1)
                y_v = min_q1_q2_a_tilda - alpha * log_prob_a_tilda

                # see line 14: compute loss for value network
                v_prediction = value_net(obs_tensor)
                v_loss = mse_criterion(v_prediction, y_v.detach())
                """policy loss"""
                # line 15: note that here we are doing gradient ascent, so we add a minus sign in the front
                policy_loss = -(q1_a_tilda - alpha * log_prob_a_tilda).mean()
                """
                add policy regularization loss, this is not in openai's minimal version, but
                they are in the original sac code, see https://github.com/vitchyr/rlkit for reference
                this part is not necessary but might improve performance
                """
                policy_mean_reg_weight = 1e-3
                policy_std_reg_weight = 1e-3
                mean_reg_loss = policy_mean_reg_weight * (mean_a_tilda**
                                                          2).mean()
                std_reg_loss = policy_std_reg_weight * (log_std_a_tilda**
                                                        2).mean()
                policy_loss = policy_loss + mean_reg_loss + std_reg_loss
                """update networks"""
                q1_optimizer.zero_grad()
                q1_loss.backward()
                q1_optimizer.step()

                q2_optimizer.zero_grad()
                q2_loss.backward()
                q2_optimizer.step()

                value_optimizer.zero_grad()
                v_loss.backward()
                value_optimizer.step()

                policy_optimizer.zero_grad()
                policy_loss.backward()
                policy_optimizer.step()

                # see line 16: update target value network with value network
                soft_update_model1_with_model2(target_value_net, value_net,
                                               polyak)

                # store diagnostic info to logger
                logger.store(LossPi=policy_loss.item(),
                             LossQ1=q1_loss.item(),
                             LossQ2=q2_loss.item(),
                             LossV=v_loss.item(),
                             Q1Vals=q1_prediction.detach().numpy(),
                             Q2Vals=q2_prediction.detach().numpy(),
                             VVals=v_prediction.detach().numpy(),
                             LogPi=log_prob_a_tilda.detach().numpy())

            ## store episode return and length to logger
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            ## reset environment
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # End of epoch wrap-up
        if (t + 1) % steps_per_epoch == 0:
            epoch = t // steps_per_epoch
            """
            Save pytorch model, very different from tensorflow version
            We need to save the environment, the state_dict of each network
            and also the state_dict of each optimizer
            """
            if not dont_save:
                sac_state_dict = {
                    'env': env,
                    'policy_net': policy_net.state_dict(),
                    'value_net': value_net.state_dict(),
                    'target_value_net': target_value_net.state_dict(),
                    'q1_net': q1_net.state_dict(),
                    'q2_net': q2_net.state_dict(),
                    'policy_opt': policy_optimizer,
                    'value_opt': value_optimizer,
                    'q1_opt': q1_optimizer,
                    'q2_opt': q2_optimizer
                }
                if (epoch % save_freq == 0) or (epoch == epochs - 1):
                    logger.save_state(sac_state_dict, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #18
0
def sac_multistep(
        env_fn,
        hidden_sizes=[256, 256],
        seed=0,
        steps_per_epoch=1000,
        epochs=1000,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        lr=3e-4,
        alpha=0.2,
        batch_size=256,
        start_steps=10000,
        max_ep_len=1000,
        save_freq=1,
        save_model=False,
        auto_alpha=True,
        grad_clip=-1,
        logger_store_freq=100,
        multistep_k=1,
        debug=False,
        use_single_variant=False,
        logger_kwargs=dict(),
):
    """
    Largely following OpenAI documentation, but a bit different
    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        hidden_sizes: number of entries is number of hidden layers
            each entry in this list indicate the size of that hidden layer.
            applies to all networks

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch. Note the epoch here is just logging epoch
            so every this many steps a logging to stdouot and also output file will happen
            note: not to be confused with training epoch which is a term used often in literature for all kinds of
            different things

        epochs (int): Number of epochs to run and train agent. Usage of this term can be different in different
            algorithms, use caution. Here every epoch you get new logs

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target
            networks. Target networks are updated towards main networks
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration. However during testing the action always come from policy

        max_ep_len (int): Maximum length of trajectory / episode / rollout. Environment will get reseted if
        timestep in an episode excedding this number

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_model (bool): set to True if want to save the trained agent

        auto_alpha: set to True to use the adaptive alpha scheme, target entropy will be set automatically

        grad_clip: whether to use gradient clipping. < 0 means no clipping

        logger_store_freq: how many steps to log debugging info, typically don't need to change

    """
    if debug:
        hidden_sizes = [2, 2]
        batch_size = 2
        start_steps = 1000
        multistep_k = 5
        use_single_variant = True
    print('[basic setups] multistep_k:', multistep_k, 'use_single_variant:',
          use_single_variant)
    """set up logger"""
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    env, test_env = env_fn(), env_fn()

    ## seed torch and numpy
    torch.manual_seed(seed)
    np.random.seed(seed)

    ## seed environment along with env action space so that everything about env is seeded
    env.seed(seed)
    env.action_space.np_random.seed(seed)
    test_env.seed(seed + 10000)
    test_env.action_space.np_random.seed(seed + 10000)

    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # if environment has a smaller max episode length, then use the environment's max episode length
    max_ep_len = env._max_episode_steps if max_ep_len > env._max_episode_steps else max_ep_len

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    # we need .item() to convert it from numpy float to python float
    act_limit = env.action_space.high[0].item()

    # Experience buffer
    replay_buffer = MultistepReplayBuffer(obs_dim=obs_dim,
                                          act_dim=act_dim,
                                          size=replay_size)
    """
    Auto tuning alpha
    """
    if auto_alpha:
        target_entropy = -np.prod(env.action_space.shape).item()  # H
        log_alpha = torch.zeros(1, requires_grad=True)
        alpha_optim = optim.Adam([log_alpha], lr=lr)
    else:
        target_entropy, log_alpha, alpha_optim = None, None, None

    def test_agent(n=1):
        """
        This will test the agent's performance by running n episodes
        During the runs, the agent only take deterministic action, so the
        actions are not drawn from a distribution, but just use the mean
        :param n: number of episodes to run the agent
        """
        ep_return_list = np.zeros(n)
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                a = policy_net.get_env_action(o, deterministic=True)
                o, r, d, _ = test_env.step(a)
                ep_ret += r
                ep_len += 1
            ep_return_list[j] = ep_ret
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs
    """init all networks"""
    # see line 1
    policy_net = TanhGaussianPolicySACAdapt(obs_dim,
                                            act_dim,
                                            hidden_sizes,
                                            action_limit=act_limit)
    q1_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)
    q2_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)

    q1_target_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)
    q2_target_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)

    # see line 2: copy parameters from value_net to target_value_net
    q1_target_net.load_state_dict(q1_net.state_dict())
    q2_target_net.load_state_dict(q2_net.state_dict())

    # set up optimizers
    policy_optimizer = optim.Adam(policy_net.parameters(), lr=lr)
    q1_optimizer = optim.Adam(q1_net.parameters(), lr=lr)
    q2_optimizer = optim.Adam(q2_net.parameters(), lr=lr)

    # mean squared error loss for v and q networks
    mse_criterion = nn.MSELoss()

    # Main loop: collect experience in env and update/log each epoch
    # NOTE: t here is the current number of total timesteps used
    # it is not the number of timesteps passed in the current episode
    current_update_index = 0
    for t in range(total_steps):
        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards,
        use the learned policy.
        """
        if t > start_steps:
            a = policy_net.get_env_action(o, deterministic=False)
        else:
            a = env.action_space.sample()
        # Step the env, get next observation, reward and done signal
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience (observation, action, reward, next observation, done) to replay buffer
        # the multi-step buffer (given to you) will store the data in a fashion that
        # they can be easily used for multi-step update
        replay_buffer.store(o, a, r, o2, d, ep_len, max_ep_len, multistep_k,
                            gamma)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2
        """perform update"""
        if replay_buffer.size >= batch_size:
            # get data from replay buffer
            batch = replay_buffer.sample_batch(batch_size)
            obs_tensor = Tensor(batch['obs1'])
            # NOTE: given the multi-step buffer, obs_next_tensor now contains the observation that are
            # k-step away from current observation
            obs_next_tensor = Tensor(batch['obs2'])
            acts_tensor = Tensor(batch['acts'])
            # NOTE: given the multi-step buffer, rewards tensor now contain the sum of discounted rewards in the next
            # k steps (or up until termination, if terminated in less than k steps)
            rews_tensor = Tensor(batch['rews']).unsqueeze(1)
            # NOTE: given the multi-step buffer, done_tensor now shows whether the data's episode terminated in less
            # than k steps or not
            done_tensor = Tensor(batch['done']).unsqueeze(1)
            """
            now we do a SAC update, following the OpenAI spinup doc
            check the openai sac document psudocode part for reference
            line nubmers indicate lines in psudocode part
            we will first compute each of the losses
            and then update all the networks in the end
            """
            # see line 12: get a_tilda, which is newly sampled action (not action from replay buffer)
            """get q loss"""
            with torch.no_grad():
                a_tilda_next, _, _, log_prob_a_tilda_next, _, _ = policy_net.forward(
                    obs_next_tensor)
                q1_next = q1_target_net(
                    torch.cat([obs_next_tensor, a_tilda_next], 1))
                q2_next = q2_target_net(
                    torch.cat([obs_next_tensor, a_tilda_next], 1))

                # TODO: compute the k-step Q estiamte (in the form of reward + next Q), don't worry about the entropy terms
                if use_single_variant:
                    ### write code for computing the k-step estimate for the single Q estimate variant case
                    # target y = (gamma**0 * r1 + ... + gamma**(k-1) * rk) + gamma ** k * (1-d) * Q (not considering the entropy term)
                    # and rews_tensor already calculate the sum in the first pair of parenthesises
                    y_q = rews_tensor + gamma**multistep_k * (
                        1 - done_tensor) * q1_next
                else:
                    ### write code for computing the k-step estimate while using double clipped Q
                    # first get the compare Q1 and Q2 and get the min, then use that min to compute the target
                    min_next_q = torch.min(q1_next, q2_next)
                    y_q = rews_tensor + gamma**multistep_k * (
                        1 - done_tensor) * min_next_q

                # add the entropy, with a simplied heuristic way
                # NOTE: you don't need to modify the following 3 lines. They deal with entropy terms
                powers = np.arange(1, multistep_k +
                                   1)  # k = 5 => posers = [1,2,3,4,5]
                entropy_discounted_sum = -sum(gamma**powers) * (
                    1 - done_tensor) * alpha * log_prob_a_tilda_next
                y_q += entropy_discounted_sum

            # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
            q1_prediction = q1_net(torch.cat([obs_tensor, acts_tensor], 1))
            q1_loss = mse_criterion(q1_prediction, y_q)
            q2_prediction = q2_net(torch.cat([obs_tensor, acts_tensor], 1))
            q2_loss = mse_criterion(q2_prediction, y_q)
            """
            get policy loss
            """
            a_tilda, mean_a_tilda, log_std_a_tilda, log_prob_a_tilda, _, _ = policy_net.forward(
                obs_tensor)

            # see line 12: second equation
            q1_a_tilda = q1_net(torch.cat([obs_tensor, a_tilda], 1))
            q2_a_tilda = q2_net(torch.cat([obs_tensor, a_tilda], 1))

            # TODO write code here to compute policy loss correctly, for both variants.
            if use_single_variant:
                # still pick Q1 network as the single network
                q_policy_part = q1_a_tilda
            else:
                # compare Q1 and Q2 to get the min
                q_policy_part = torch.min(q1_a_tilda, q2_a_tilda)

            # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
            policy_loss = (alpha * log_prob_a_tilda - q_policy_part).mean()
            """
            alpha loss, update alpha
            """
            if auto_alpha:
                alpha_loss = -(
                    log_alpha *
                    (log_prob_a_tilda + target_entropy).detach()).mean()

                alpha_optim.zero_grad()
                alpha_loss.backward()
                if grad_clip > 0:
                    nn.utils.clip_grad_norm_(log_alpha, grad_clip)
                alpha_optim.step()

                alpha = log_alpha.exp().item()
            else:
                alpha_loss = 0
            """update networks"""
            q1_optimizer.zero_grad()
            q1_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(q1_net.parameters(), grad_clip)
            q1_optimizer.step()

            q2_optimizer.zero_grad()
            q2_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(q2_net.parameters(), grad_clip)
            q2_optimizer.step()

            policy_optimizer.zero_grad()
            policy_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(policy_net.parameters(), grad_clip)
            policy_optimizer.step()

            # see line 16: update target value network with value network
            soft_update_model1_with_model2(q1_target_net, q1_net, polyak)
            soft_update_model1_with_model2(q2_target_net, q2_net, polyak)

            current_update_index += 1
            if current_update_index % logger_store_freq == 0:
                # store diagnostic info to logger
                logger.store(LossPi=policy_loss.item(),
                             LossQ1=q1_loss.item(),
                             LossQ2=q2_loss.item(),
                             LossAlpha=alpha_loss.item(),
                             Q1Vals=q1_prediction.detach().numpy(),
                             Q2Vals=q2_prediction.detach().numpy(),
                             Alpha=alpha,
                             LogPi=log_prob_a_tilda.detach().numpy())

        if d or (ep_len == max_ep_len):
            """when episode terminates, log info about this episode, then reset"""
            ## store episode return and length to logger
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            ## reset environment
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # End of epoch wrap-up
        if (t + 1) % steps_per_epoch == 0:
            epoch = t // steps_per_epoch
            """
            Save pytorch model, very different from tensorflow version
            We need to save the environment, the state_dict of each network
            and also the state_dict of each optimizer
            """
            if save_model:
                sac_state_dict = {
                    'env': env,
                    'policy_net': policy_net.state_dict(),
                    'q1_net': q1_net.state_dict(),
                    'q2_net': q2_net.state_dict(),
                    'q1_target_net': q1_target_net.state_dict(),
                    'q2_target_net': q2_target_net.state_dict(),
                    'policy_opt': policy_optimizer,
                    'q1_opt': q1_optimizer,
                    'q2_opt': q2_optimizer,
                    'log_alpha': log_alpha,
                    'alpha_opt': alpha_optim,
                    'target_entropy': target_entropy
                }
                if (epoch % save_freq == 0) or (epoch == epochs - 1):
                    logger.save_state(sac_state_dict, None)
            # use joblib.load(fname) to load

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # TODO write code here to estimate the bias of the Q networks
            #  recall that we can define the Q bias to be Q value - discounted MC return
            #  initialize another environment that is only used for provide such a bias estimate
            #  store that to logger

            # I eventually decided not to use buffer, because a buffer makes it a bit harder to discard the last 200 datapoints
            # but the discussion on buffer was enlightening Watcher! I learned a lot :)

            # this function is adapted from test_agent()
            def q_bias_analysis(N=1):
                # initialize another env
                # all b_XXX means bias
                b_env = env_fn()

                # loop for n episodes
                b_observations, b_actions, b_mc_returns = [], [], []
                for j in range(N):
                    b_o, b_r, b_d, b_ep_len = b_env.reset(), 0, False, 0
                    observations, actions, rewards, mc_returns = [], [], [], [
                        0
                    ]  # last return is 0
                    while not (b_d or (b_ep_len == max_ep_len)):
                        # add noise to action selection, so no deterministic action
                        b_a = policy_net.get_env_action(b_o,
                                                        deterministic=False)
                        observations.append(b_o)
                        actions.append(b_a)
                        # b_env.render() # render the environment
                        # Step the env, get next observation, reward and done signal
                        b_o1, b_r, b_d, _ = b_env.step(b_a)
                        rewards.append(b_r)
                        b_ep_len += 1
                        b_o = b_o1
                    # check that everything is paired up
                    assert len(observations) == len(actions) == len(rewards)
                    # decide the cutoff point
                    if b_ep_len == 1000:  # terminates because of reaching max limit, then discard the last 200
                        cut_idx = 800
                    else:  # terminate before 1000 steps naturally then the MC return is accurate for later state-action pairs
                        cut_idx = len(observations)
                    b_observations += observations[:cut_idx]
                    b_actions += actions[:cut_idx]
                    G = 0
                    # loop the rewards list backward to calculate the returns
                    for r in reversed(rewards):
                        G = gamma * G + r
                        mc_returns.append(G)
                    mc_returns.reverse(
                    )  # reverse [0, something, something, ...] into correct order
                    b_mc_returns += mc_returns[:cut_idx]

                # after rendering close env
                # b_env.close()

                # use b_obs, b_acts to calculate Q estimate
                b_obs_tensor = Tensor(b_observations)
                b_acts_tensor = Tensor(b_actions)
                if use_single_variant:
                    # as usual, choose q1 as single network
                    b_q_estimate = q1_net(
                        torch.cat([b_obs_tensor, b_acts_tensor], 1))
                else:
                    # as usual, take the min
                    b_q1 = q1_net(torch.cat([b_obs_tensor, b_acts_tensor], 1))
                    b_q2 = q2_net(torch.cat([b_obs_tensor, b_acts_tensor], 1))
                    b_q_estimate = torch.min(b_q1, b_q2)

                # mc returns have been calculated but is still a list, so convert it into a tensor
                # need to unsqueeze it!!! need to unsqueeze it!!! need to unsqueeze it!!!
                # or a [1000, 1] tensor - a [1000] tensor would be a [1000, 1000] tensor
                # and you will get a 1e6 bias like I did ............
                b_mc_returns_tensor = Tensor(b_mc_returns).unsqueeze(1)

                # check all pairs are matched
                assert len(b_q_estimate) == len(b_mc_returns_tensor)

                # check how many steps each episode makes just for curiosity
                print('######### number of datapoints:', len(b_q_estimate))
                logger.log_tabular('NumDatapoints', len(b_q_estimate))

                # Q-bias = Q value - discounted MC return
                q_bias = b_q_estimate - b_mc_returns_tensor

                # put the result in buffer store (avg is taken care of, no need to calculate by hand)
                logger.store(QBias=q_bias.detach().numpy())

            # call q_bias_analysis function (running N episodes)
            q_bias_analysis(5)

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('Alpha', with_min_and_max=True)
            logger.log_tabular('LossAlpha', average_only=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)

            # TODO after you store bias info to logger, you should also write code here to log them
            #  so that you can later plot them
            logger.log_tabular('QBias', with_min_and_max=True)

            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
            sys.stdout.flush()
コード例 #19
0
def vpg(env_fn, actor_critic=tabular_actor_critic.TabularVPGActorCritic,
        n_episodes=100, env_kwargs={}, logger_kwargs={}, ac_kwargs={},
        n_test_episodes=100, gamma=0.99, lam=0.95, bootstrap_n=3):
    """
    Environment has discrete observation and action spaces, both
    low dimensional so policy and value functions can be stored
    in table.

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic : The constructor method for an actor critic class
            with an ``act`` method, and attributes ``pi`` and ``v``.

        n_episodes (int): Number of episodes/rollouts of interaction (equivalent
            to number of policy updates) to perform.

        bootstrap_n (int) : (optional) Number of reward steps to use with a bootstrapped
            approximate Value function.  If None, use GAE-lambda advantage estimation.
    """
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())
    log_wandb = logger_kwargs.get('output_dir').startswith('wandb')

    env = env_fn(**env_kwargs)
    test_env = env_fn(**env_kwargs)

    obs_dim = env.observation_space.n
    act_dim = env.action_space.n

    ac = actor_critic(obs_dim, act_dim, **ac_kwargs)

    def test_agent():
        o, test_ep_ret, test_ep_len = test_env.reset(), 0, 0

        episode = 0
        while episode < n_test_episodes:
            a, _ = ac.step(o)
            o2, r, d, _ = test_env.step(a)
            test_ep_ret += r
            test_ep_len += 1

            o = o2

            if d is True:
                logger.store(TestEpRet=test_ep_ret)
                logger.store(TestEpLen=test_ep_len)
                episode += 1
                o, test_ep_ret, test_ep_len = test_env.reset(), 0, 0

    traj = Trajectory(gamma, lam, bootstrap_n)

    # Run test agent before any training happens
    episode = 0
    test_agent()
    print('Mean test returns from random agent:', np.mean(logger.epoch_dict['TestEpRet']), flush=True)
    logger.log_tabular('Epoch', episode)
    logger.log_tabular('TestEpRet', with_min_and_max=True)
    logger.log_tabular('TestEpLen', with_min_and_max=True)
    # Hack logger values for compatibility with main logging header keys
    logger.log_tabular('EpRet', 0)
    logger.log_tabular('EpLen', 0)
    logger.log_tabular('AverageVVals', 0)
    logger.log_tabular('MaxVVals', 0)
    logger.log_tabular('MinVVals', 0)
    logger.log_tabular('StdVVals', 0)
    logger.log_tabular('TotalEnvInteracts', 0)
    if log_wandb:
        wandb.log(logger.log_current_row, step=episode)
    logger.dump_tabular()

    episode += 1
    o, ep_ret, ep_len = env.reset(), 0, 0
    total_env_interacts = 0

    while episode < n_episodes:
        a, v = ac.step(o)
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1
        total_env_interacts += 1

        traj.store(o, a, r, v)
        logger.store(VVals=v)

        o = o2

        if d is True:
            traj.finish_path(last_obs=o, last_val=0)
            ac.update(traj)
            test_agent()

            logger.log_tabular('Epoch', episode)
            logger.log_tabular('EpRet', ep_ret)
            logger.log_tabular('EpLen', ep_len)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('TestEpLen', with_min_and_max=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('TotalEnvInteracts', total_env_interacts)
            if log_wandb:
                wandb.log(logger.log_current_row, step=episode)
            logger.dump_tabular()

            traj.reset()
            episode += 1
            o, ep_ret, ep_len = env.reset(), 0, 0

    print('pi', ac.pi, flush=True)
    print('logits_pi', ac.logits_pi, flush=True)
    print('value', ac.V, flush=True)
    if isinstance(ac, tabular_actor_critic.TabularReturnHCA) or isinstance(ac, tabular_actor_critic.TabularStateHCA):
        print('h', ac.h, flush=True)
コード例 #20
0
def sac1_carla(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0,
        steps_per_epoch=5000, epochs=100, replay_size=int(3e5), gamma=0.99,
        polyak=0.995, lr=1e-3, alpha=0.2, batch_size=100, start_steps=10000,
        max_ep_len=1000, logger_kwargs=dict(), save_freq=1):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``mu``       (batch, act_dim)  | Computes mean actions from policy
                                           | given states.
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``. Critical: must be differentiable
                                           | with respect to policy parameters all
                                           | the way through action sampling.
            ``q1``       (batch,)          | Gives one estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q2``       (batch,)          | Gives another estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q1_pi``    (batch,)          | Gives the composition of ``q1`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q1(x, pi(x)).
            ``q2_pi``    (batch,)          | Gives the composition of ``q2`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q2(x, pi(x)).
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to SAC.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        lr (float): Learning rate (used for policy/value/alpha learning).

        alpha (float/'auto'): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.) / 'auto': alpha is automated.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()

    obs_space = env.observation_space.spaces[0]
    act_space = env.action_space
    obs_dim = obs_space.shape
    act_dim = act_space.shape

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space


    # Inputs to computation graph
    x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders_from_space(obs_space, act_space, obs_space, None, None)

    # Main outputs from computation graph
    with tf.variable_scope('main'):
        mu, pi, logp_pi, q1, q2, q1_pi, q2_pi = actor_critic(x_ph, a_ph, **ac_kwargs)
    
    # Target value network
    with tf.variable_scope('target'):
        _, _, logp_pi_, _, _,q1_pi_, q2_pi_= actor_critic(x2_ph, a_ph, **ac_kwargs)

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=list(obs_dim), act_dim=list(act_dim), size=replay_size)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in 
                       ['main/cnn_layer', 'main/pi', 'main/q1', 'main/q2', 'main'])
    print(('\nNumber of parameters: \t cnn_layer: %d, \t pi: %d, \t' + \
           'q1: %d, \t q2: %d, \t total: %d\n')%var_counts)

######
    if alpha == 'auto':
        target_entropy = (-np.prod(env.action_space.shape))

        log_alpha = tf.get_variable( 'log_alpha', dtype=tf.float32, initializer=0.0)
        alpha = tf.exp(log_alpha)

        alpha_loss = tf.reduce_mean(-log_alpha * tf.stop_gradient(logp_pi + target_entropy))

        alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr, name='alpha_optimizer')
        train_alpha_op = alpha_optimizer.minimize(loss=alpha_loss, var_list=[log_alpha])
######

    # Min Double-Q:
    min_q_pi = tf.minimum(q1_pi_, q2_pi_)

    # Targets for Q and V regression
    v_backup = tf.stop_gradient(min_q_pi - alpha * logp_pi)
    q_backup = r_ph + gamma*(1-d_ph)*v_backup


    # Soft actor-critic losses
    pi_loss = tf.reduce_mean(alpha * logp_pi - tf.stop_gradient(q1_pi))
    q1_loss = 0.5 * tf.reduce_mean((q_backup - q1)**2)
    q2_loss = 0.5 * tf.reduce_mean((q_backup - q2)**2)
    value_loss = q1_loss + q2_loss

    cnn_params = get_vars('main/cnn_layer')
    # Policy train op 
    # (has to be separate from value train op, because q1_pi appears in pi_loss)
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    pi_params = get_vars('main/pi')
    train_pi_op = pi_optimizer.minimize(pi_loss, var_list = cnn_params + pi_params)

    # Value train op
    # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order)
    value_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    value_params = get_vars('main/q')
    with tf.control_dependencies([train_pi_op]):
        train_value_op = value_optimizer.minimize(value_loss, var_list = cnn_params + value_params)

    # Polyak averaging for target variables
    # (control flow because sess.run otherwise evaluates in nondeterministic order)
    with tf.control_dependencies([train_value_op]):
        target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main)
                                  for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    # All ops to call during one training step
    if isinstance(alpha, Number):
        step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, tf.identity(alpha),
                train_pi_op, train_value_op, target_update]
    else:
        step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, alpha,
                train_pi_op, train_value_op, target_update, train_alpha_op]


    # Initializing targets to match main variables
    target_init = tf.group([tf.assign(v_targ, v_main)
                              for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph}, 
                                outputs={'mu': mu, 'pi': pi, 'q1': q1, 'q2': q2})

    def get_action(o, deterministic=False):
        act_op = mu if deterministic else pi
        return sess.run(act_op, feed_dict={x_ph: o[np.newaxis,...]})[0]

    def test_agent(n=1):
        global sess, mu, pi, q1, q2, q1_pi, q2_pi
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not(d or (ep_len == 200)): # max_ep_len
                # Take deterministic actions at test time 
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t > start_steps:
            a = get_action(o)
        else:
            a = [0.35, 0]
            # a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len==max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update 
        # most recent observation!
        o = o2

        # End of episode. Training (ep_len times).
        if d or (ep_len == max_ep_len):
            print('EpRet: ',ep_ret, 'ep_len: ', ep_len)
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            """
            for j in range(ep_len):
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {x_ph: batch['obs1'],
                             x2_ph: batch['obs2'],
                             a_ph: batch['acts'],
                             r_ph: batch['rews'],
                             d_ph: batch['done'],
                            }
                # step_ops = [pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, alpha, train_pi_op, train_value_op, target_update]
                outs = sess.run(step_ops, feed_dict)
                logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2],
                            Q1Vals=outs[3], Q2Vals=outs[4],
                            LogPi=outs[5], Alpha=outs[6])

            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0


        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs-1):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # logger.store(): store the data; logger.log_tabular(): log the data; logger.dump_tabular(): write the data
            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Alpha',average_only=True)
            logger.log_tabular('Q1Vals', with_min_and_max=True) 
            logger.log_tabular('Q2Vals', with_min_and_max=True) 
            # logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            # logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()
コード例 #21
0
def td3(env_fn: Callable,
        actor_critic: torch.nn.Module = core.MLPActorCritic,
        ac_kwargs: Dict = None,
        seed: int = 0,
        steps_per_epoch: int = 4000,
        epochs: int = 2000,
        replay_size: int = int(1e6),
        gamma: float = 0.99,
        polyak: float = 0.995,
        pi_lr: Union[Callable, float] = 1e-3,
        q_lr: Union[Callable, float] = 1e-3,
        batch_size: int = 100,
        start_steps: int = 10000,
        update_after: int = 1000,
        update_every: int = 100,
        act_noise: Union[Callable, float] = 0.1,
        target_noise: float = 0.2,
        noise_clip: float = 0.5,
        policy_delay: int = 2,
        num_test_episodes: int = 3,
        max_ep_len: int = 1000,
        logger_kwargs: Dict = None,
        save_freq: int = 1,
        random_exploration: Union[Callable, float] = 0.0,
        save_checkpoint_path: str = None,
        load_checkpoint_path: str = None,
        load_model_file: str = None):
    """
    Twin Delayed Deep Deterministic Policy Gradient (TD3)


    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with an ``act`` 
            method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
            The ``act`` method and ``pi`` module should accept batches of 
            observations as inputs, and ``q1`` and ``q2`` should accept a batch 
            of observations and a batch of actions as inputs. When called, 
            these should return:

            ===========  ================  ======================================
            Call         Output Shape      Description
            ===========  ================  ======================================
            ``act``      (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``pi``       (batch, act_dim)  | Tensor containing actions from policy
                                           | given observations.
            ``q1``       (batch,)          | Tensor containing one current estimate
                                           | of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ``q2``       (batch,)          | Tensor containing the other current 
                                           | estimate of Q* for the provided observations
                                           | and actions. (Critical: make sure to
                                           | flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
            you provided to TD3.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float or callable): Learning rate for policy.

        q_lr (float or callable): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        update_after (int): Number of env interactions to collect before
            starting to do gradient descent updates. Ensures replay buffer
            is full enough for useful updates.

        update_every (int): Number of env interactions that should elapse
            between gradient descent updates. Note: Regardless of how long 
            you wait between updates, the ratio of env steps to gradient steps 
            is locked to 1.

        act_noise (float or callable): Stddev for Gaussian exploration noise added to
            policy at training time. (At test time, no noise is added.)

        target_noise (float): Stddev for smoothing noise added to target 
            policy.

        noise_clip (float): Limit for absolute value of target policy 
            smoothing noise.

        policy_delay (int): Policy will only be updated once every 
            policy_delay times for each update of the Q-networks.

        num_test_episodes (int): Number of episodes to test the deterministic
            policy at the end of each epoch.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        random_exploration (float or callable): Probability to randomly select
            an action instead of selecting from policy.

        save_checkpoint_path (str): Path to save the model. If not set, no model
            will be saved

        load_checkpoint_path (str): Path to load the model. Cannot be set if
            save_model_path is set.
    """
    if logger_kwargs is None:
        logger_kwargs = dict()
    if ac_kwargs is None:
        ac_kwargs = dict()

    if save_checkpoint_path is not None:
        assert load_checkpoint_path is None, "load_model_path cannot be set when save_model_path is already set"
        if not os.path.exists(save_checkpoint_path):
            print(f"Folder {save_checkpoint_path} does not exist, creating...")
            os.makedirs(save_checkpoint_path)

    if load_checkpoint_path is not None:
        assert load_model_file is None, "load_checkpoint_path cannot be set when load_model_file is already set"
    # ------------ Initialisation begin ------------
    loaded_state_dict = None
    if load_checkpoint_path is not None:
        logger = EpochLogger(**logger_kwargs)
        logger.save_config(locals())
        loaded_state_dict = load_latest_state_dict(load_checkpoint_path)

        logger.epoch_dict = loaded_state_dict['logger_epoch_dict']
        q_learning_rate_fn = loaded_state_dict['q_learning_rate_fn']
        pi_learning_rate_fn = loaded_state_dict['pi_learning_rate_fn']
        epsilon_fn = loaded_state_dict['epsilon_fn']
        act_noise_fn = loaded_state_dict['act_noise_fn']
        replay_buffer = loaded_state_dict['replay_buffer']
        env, test_env = loaded_state_dict['env'], loaded_state_dict['test_env']
        ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
        ac_targ = deepcopy(ac)
        ac.load_state_dict(loaded_state_dict['ac'])
        ac_targ.load_state_dict(loaded_state_dict['ac_targ'])
        obs_dim = env.observation_space.shape
        act_dim = env.action_space.shape[0]
        env.action_space.np_random.set_state(
            loaded_state_dict['action_space_state'])

        # List of parameters for both Q-networks (save this for convenience)
        q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())
        t_ori = loaded_state_dict['t']
        pi_optimizer = Adam(ac.pi.parameters(), lr=pi_learning_rate_fn(t_ori))
        pi_optimizer.load_state_dict(loaded_state_dict['pi_optimizer'])
        q_optimizer = Adam(q_params, lr=q_learning_rate_fn(t_ori))
        q_optimizer.load_state_dict(loaded_state_dict['q_optimizer'])
        np.random.set_state(loaded_state_dict['np_rng_state'])
        torch.set_rng_state(loaded_state_dict['torch_rng_state'])

    else:
        logger = EpochLogger(**logger_kwargs)
        logger.save_config(locals())

        torch.manual_seed(seed)
        np.random.seed(seed)
        random.seed(seed)
        os.environ['PYTHONHASHSEED'] = str(seed)

        q_learning_rate_fn = get_schedule_fn(q_lr)
        pi_learning_rate_fn = get_schedule_fn(pi_lr)
        act_noise_fn = get_schedule_fn(act_noise)
        epsilon_fn = get_schedule_fn(random_exploration)

        env, test_env = env_fn(), env_fn()
        obs_dim = env.observation_space.shape
        act_dim = env.action_space.shape[0]

        env.action_space.seed(seed)

        # Experience buffer
        replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                     act_dim=act_dim,
                                     size=replay_size)

        # Create actor-critic module and target networks
        if load_model_file is not None:
            assert os.path.exists(
                load_model_file
            ), f"Model file path does not exist: {load_model_file}"
            ac = torch.load(load_model_file)
        else:
            ac = actor_critic(env.observation_space, env.action_space,
                              **ac_kwargs)
        ac_targ = deepcopy(ac)

        # List of parameters for both Q-networks (save this for convenience)
        q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

        # Set up optimizers for policy and q-function
        pi_optimizer = Adam(ac.pi.parameters(), lr=pi_learning_rate_fn(0))
        q_optimizer = Adam(q_params, lr=q_learning_rate_fn(0))
        t_ori = 0

    act_limit = 1.0

    # ------------ Initialisation end ------------

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(
        core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' %
               var_counts)

    torch.set_printoptions(profile="default")

    # Set up function for computing TD3 Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
            'obs2'], data['done']

        q1 = ac.q1(o, a)
        q2 = ac.q2(o, a)

        # Bellman backup for Q functions
        with torch.no_grad():
            pi_targ = ac_targ.pi(o2)
            # Target policy smoothing
            epsilon = torch.randn_like(pi_targ) * target_noise
            epsilon = torch.clamp(epsilon, -noise_clip, noise_clip)
            a2 = pi_targ + epsilon
            a2 = torch.clamp(a2, -act_limit, act_limit)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            backup = r + gamma * (1 - d) * q_pi_targ

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup)**2).mean()
        loss_q2 = ((q2 - backup)**2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        loss_info = dict(Q1Vals=q1.detach().numpy(),
                         Q2Vals=q2.detach().numpy())

        return loss_q, loss_info

    # Set up function for computing TD3 pi loss
    def compute_loss_pi(data):
        o = data['obs']
        q1_pi = ac.q1(o, ac.pi(o))
        return -q1_pi.mean()

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data, timer):
        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, loss_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **loss_info)

        # Possibly update pi and target networks
        if timer % policy_delay == 0:

            # Freeze Q-networks so you don't waste computational effort
            # computing gradients for them during the policy learning step.
            for p in q_params:
                p.requires_grad = False

            # Next run one gradient descent step for pi.
            pi_optimizer.zero_grad()
            loss_pi = compute_loss_pi(data)
            loss_pi.backward()
            pi_optimizer.step()

            # Unfreeze Q-networks so you can optimize it at next DDPG step.
            for p in q_params:
                p.requires_grad = True

            # Record things
            logger.store(LossPi=loss_pi.item())

            # Finally, update target networks by polyak averaging.
            with torch.no_grad():
                for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                    # NB: We use an in-place operations "mul_", "add_" to update target
                    # params, as opposed to "mul" and "add", which would make new tensors.
                    p_targ.data.mul_(polyak)
                    p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, noise_scale):
        a = ac.act(torch.as_tensor(o, dtype=torch.float32))
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, -act_limit, act_limit)

    def test_agent():
        for _ in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                scaled_action = get_action(o, 0)
                o, r, d, _ = test_env.step(
                    unscale_action(env.action_space, scaled_action))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    if loaded_state_dict is not None:
        o = loaded_state_dict['o']
        ep_ret = loaded_state_dict['ep_ret']
        ep_len = loaded_state_dict['ep_len']
    else:
        o, ep_ret, ep_len = env.reset(), 0, 0
    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):
        t += t_ori
        # printMemUsage(f"start of step {t}")
        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy (with some noise, via act_noise).
        if t > start_steps and np.random.rand() > epsilon_fn(t):
            a = get_action(o, act_noise_fn(t))
            unscaled_action = unscale_action(env.action_space, a)
        else:
            unscaled_action = env.action_space.sample()
            a = scale_action(env.action_space, unscaled_action)
        # Step the env
        o2, r, d, _ = env.step(unscaled_action)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0

        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch, timer=j)

        # End of epoch handling
        if (t + 1) % steps_per_epoch == 0:
            # Perform LR decay
            update_learning_rate(q_optimizer, q_learning_rate_fn(t))
            update_learning_rate(pi_optimizer, pi_learning_rate_fn(t))
            epoch = (t + 1) // steps_per_epoch

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()

            # Save model and checkpoint
            save_checkpoint = False
            checkpoint_path = ""
            if save_checkpoint_path is not None:
                save_checkpoint = True
                checkpoint_path = save_checkpoint_path
            if load_checkpoint_path is not None:
                save_checkpoint = True
                checkpoint_path = load_checkpoint_path
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({}, None)

                if save_checkpoint:
                    checkpoint_file = os.path.join(checkpoint_path,
                                                   f'save_{epoch}.pt')
                    torch.save(
                        {
                            'ac':
                            ac.state_dict(),
                            'ac_targ':
                            ac_targ.state_dict(),
                            'replay_buffer':
                            replay_buffer,
                            'pi_optimizer':
                            pi_optimizer.state_dict(),
                            'q_optimizer':
                            q_optimizer.state_dict(),
                            'logger_epoch_dict':
                            logger.epoch_dict,
                            'q_learning_rate_fn':
                            q_learning_rate_fn,
                            'pi_learning_rate_fn':
                            pi_learning_rate_fn,
                            'epsilon_fn':
                            epsilon_fn,
                            'act_noise_fn':
                            act_noise_fn,
                            'torch_rng_state':
                            torch.get_rng_state(),
                            'np_rng_state':
                            np.random.get_state(),
                            'action_space_state':
                            env.action_space.np_random.get_state(),
                            'env':
                            env,
                            'test_env':
                            test_env,
                            'ep_ret':
                            ep_ret,
                            'ep_len':
                            ep_len,
                            'o':
                            o,
                            't':
                            t + 1
                        }, checkpoint_file)
                    delete_old_files(checkpoint_path, 10)
コード例 #22
0
class sac_discrete_class:
    def __init__(self,
                 env_fn,
                 Actor=core.DiscreteMLPActor,
                 Critic=core.DiscreteMLPQFunction,
                 ac_kwargs=dict(),
                 seed=0,
                 steps_per_epoch=4000,
                 epochs=100,
                 replay_size=int(5e5),
                 gamma=0.99,
                 polyak=0.995,
                 lr=1e-5,
                 alpha=0.2,
                 batch_size=100,
                 start_steps=10000,
                 update_after=1000,
                 update_times_every_step=50,
                 num_test_episodes=10,
                 max_ep_len=2000,
                 logger_kwargs=dict(),
                 save_freq=1,
                 automatic_entropy_tuning=True,
                 use_gpu=False,
                 gpu_parallel=False,
                 show_test_render=False,
                 last_save_path=None,
                 state_of_art_model=False,
                 **kwargs):
        """
        Soft Actor-Critic (SAC)


        Args:
            env_fn : A function which creates a copy of the environment.
                The environment must satisfy the OpenAI Gym API.

            actor_critic: The constructor method for a PyTorch Module with an ``act``
                method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
                The ``act`` method and ``pi`` module should accept batches of
                observations as inputs, and ``q1`` and ``q2`` should accept a batch
                of observations and a batch of actions as inputs. When called,
                ``act``, ``q1``, and ``q2`` should return:

                ===========  ================  ======================================
                Call         Output Shape      Description
                ===========  ================  ======================================
                ``act``      (batch, act_dim)  | Numpy array of actions for each
                                               | observation.
                ``q1``       (batch,)          | Tensor containing one current estimate
                                               | of Q* for the provided observations
                                               | and actions. (Critical: make sure to
                                               | flatten this!)
                ``q2``       (batch,)          | Tensor containing the other current
                                               | estimate of Q* for the provided observations
                                               | and actions. (Critical: make sure to
                                               | flatten this!)
                ===========  ================  ======================================

                Calling ``pi`` should return:

                ===========  ================  ======================================
                Symbol       Shape             Description
                ===========  ================  ======================================
                ``a``        (batch, act_dim)  | Tensor containing actions from policy
                                               | given observations.
                ``logp_pi``  (batch,)          | Tensor containing log probabilities of
                                               | actions in ``a``. Importantly: gradients
                                               | should be able to flow back into ``a``.
                ===========  ================  ======================================

            ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
                you provided to SAC.

            seed (int): Seed for random number generators.

            steps_per_epoch (int): Number of steps of interaction (state-action pairs)
                for the agent and the environment in each epoch.

            epochs (int): Number of epochs to run and train agent.

            replay_size (int): Maximum length of replay buffer.

            gamma (float): Discount factor. (Always between 0 and 1.)

            polyak (float): Interpolation factor in polyak averaging for target
                networks. Target networks are updated towards main networks
                according to:

                .. math:: \\theta_{\\text{targ}} \\leftarrow
                    \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

                where :math:`\\rho` is polyak. (Always between 0 and 1, usually
                close to 1.)

            lr (float): Learning rate (used for both policy and value learning).

            alpha (float): Entropy regularization coefficient. (Equivalent to
                inverse of reward scale in the original SAC paper.)

            batch_size (int): Minibatch size for SGD.

            start_steps (int): Number of steps for uniform-random action selection,
                before running real policy. Helps exploration.

            update_after (int): Number of env interactions to collect before
                starting to do gradient descent updates. Ensures replay buffer
                is full enough for useful updates.

            update_times_every_step (int): Number of env interactions that should elapse
                between gradient descent updates. Note: Regardless of how long
                you wait between updates, the ratio of env steps to gradient steps
                is locked to 1.

            num_test_episodes (int): Number of episodes to test the deterministic
                policy at the end of each epoch.

            max_ep_len (int): Maximum length of trajectory / episode / rollout.

            logger_kwargs (dict): Keyword args for EpochLogger.

            save_freq (int): How often (in terms of gap between epochs) to save
                the current policy and value function.

        """
        self.ac_kwargs = ac_kwargs
        self.seed = seed
        self.steps_per_epoch = steps_per_epoch
        self.epochs = epochs
        self.replay_size = replay_size
        self.gamma = gamma
        self.polyak = polyak
        self.lr = lr
        self.alpha = alpha
        self.batch_size = batch_size
        self.start_steps = start_steps
        self.update_after = update_after
        self.update_times_every_step = update_times_every_step
        self.num_test_episodes = num_test_episodes
        self.max_ep_len = max_ep_len
        self.logger_kwargs = logger_kwargs
        self.save_freq = save_freq
        self.automatic_entropy_tuning = automatic_entropy_tuning
        self.use_gpu = use_gpu
        self.gpu_parallel = gpu_parallel
        self.show_test_render = show_test_render
        self.last_save_path = last_save_path
        self.kwargs = kwargs

        self.logger = EpochLogger(**logger_kwargs)
        self.logger.save_config(locals())

        torch.manual_seed(seed)
        np.random.seed(seed)

        self.env = env_fn()
        self.test_env = env_fn()

        self.env.seed(seed)
        # env.seed(seed)
        # test_env.seed(seed)
        self.obs_dim = self.env.observation_space.shape
        self.act_dim = self.env.action_space.n

        # Create actor-critic module and target networks
        self.state_of_art_model = state_of_art_model
        if self.state_of_art_model:
            self.actor = Actor(**ac_kwargs)
            self.critic1 = Critic(**ac_kwargs)
            self.critic2 = Critic(**ac_kwargs)

            self.critic1_targ = deepcopy(self.critic1)
            self.critic2_targ = deepcopy(self.critic2)
        else:
            self.actor = Actor(self.obs_dim, self.act_dim, **ac_kwargs)
            self.critic1 = Critic(self.obs_dim, self.act_dim, **ac_kwargs)
            self.critic2 = Critic(self.obs_dim, self.act_dim, **ac_kwargs)

            self.critic1_targ = deepcopy(self.critic1)
            self.critic2_targ = deepcopy(self.critic2)
        # gpu是否使用
        if torch.cuda.is_available():
            self.device = torch.device("cuda" if self.use_gpu else "cpu")
            if gpu_parallel:
                self.actor = torch.nn.DataParallel(self.actor)
                self.critic1 = torch.nn.DataParallel(self.critic1)
                self.critic2 = torch.nn.DataParallel(self.critic2)
                self.critic1_targ = torch.nn.DataParallel(self.critic1_targ)
                self.critic2_targ = torch.nn.DataParallel(self.critic2_targ)
        else:
            self.use_gpu = False
            self.gpu_parallel = False
            self.device = torch.device("cpu")
        # Freeze target networks with respect to optimizers (only update via polyak averaging)
        for p in self.critic1_targ.parameters():
            p.requires_grad = False
        for p in self.critic2_targ.parameters():
            p.requires_grad = False
        self.actor.to(self.device)
        self.critic1.to(self.device)
        self.critic2.to(self.device)
        self.critic1_targ.to(self.device)
        self.critic2_targ.to(self.device)

        # Experience buffer
        self.replay_buffer = ReplayBuffer(obs_dim=self.obs_dim,
                                          act_dim=1,
                                          size=replay_size,
                                          device=self.device)

        # # List of parameters for both Q-networks (save this for convenience)
        # q_params = itertools.chain(critic1.parameters(), critic2.parameters())

        if self.automatic_entropy_tuning:
            # we set the max possible entropy as the target entropy
            self.target_entropy = -np.log((1.0 / self.act_dim)) * 0.98
            self.log_alpha = torch.zeros(1,
                                         requires_grad=True,
                                         device=self.device)
            self.alpha = self.log_alpha.exp()
            self.alpha_optim = Adam([self.log_alpha], lr=lr, eps=1e-4)

        # Count variables (protip: try to get a feel for how different size networks behave!)
        var_counts = tuple(
            core.count_vars(module)
            for module in [self.actor, self.critic1, self.critic2])
        self.logger.log(
            '\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' %
            var_counts)

        # Set up optimizers for policy and q-function
        self.pi_optimizer = Adam(self.actor.parameters(), lr=lr)
        self.q1_optimizer = Adam(self.critic1.parameters(), lr=lr)
        self.q2_optimizer = Adam(self.critic2.parameters(), lr=lr)

        if last_save_path is not None:
            checkpoints = torch.load(last_save_path)
            self.epoch = checkpoints['epoch']
            self.actor.load_state_dict(checkpoints['actor'])
            self.critic1.load_state_dict(checkpoints['critic1'])
            self.critic2.load_state_dict(checkpoints['critic2'])
            self.pi_optimizer.load_state_dict(checkpoints['pi_optimizer'])
            self.q1_optimizer.load_state_dict(checkpoints['q1_optimizer'])
            self.q2_optimizer.load_state_dict(checkpoints['q2_optimizer'])
            self.critic1_targ.load_state_dict(checkpoints['critic1_targ'])
            self.critic2_targ.load_state_dict(checkpoints['critic2_targ'])

            # last_best_Return_per_local = checkpoints['last_best_Return_per_local']
            print("succesfully load last prameters")
        else:
            self.epoch = 0

            print("Dont load last prameters.")

    # Set up function for computing SAC Q-losses
    def compute_loss_q(self, data):

        # Bellman backup for Q functions
        with torch.no_grad():
            o, a, r, o2, d = data['obs'], data['act'], data['rew'], data[
                'obs2'], data['done']

            r = r.unsqueeze(-1) if r.ndim == 1 else r
            d = d.unsqueeze(-1) if d.ndim == 1 else d

            if self.state_of_art_model and o.ndim != 4:
                o = o.unsqueeze(dim=1)
                o2 = o2.unsqueeze(dim=1)

            # Target actions come from *current* policy
            a2, (a2_p, logp_a2), _ = self.get_action(o2)

            # Target Q-values
            q1_pi_targ = self.critic1_targ(o2)
            q2_pi_targ = self.critic2_targ(o2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            min_qf_next_target = a2_p * (q_pi_targ - self.alpha * logp_a2)
            min_qf_next_target = min_qf_next_target.mean(dim=1).unsqueeze(-1)
            backup = r + self.gamma * (1 - d) * min_qf_next_target

        q1 = self.critic1(o).gather(1, a.long())
        q2 = self.critic2(o).gather(1, a.long())
        # MSE loss against Bellman backup
        loss_q1 = F.mse_loss(q1, backup)
        loss_q2 = F.mse_loss(q2, backup)

        # Useful info for logging
        q_info = dict(Q1Vals=q1.detach().cpu().numpy(),
                      Q2Vals=q2.detach().cpu().numpy())

        return loss_q1, loss_q2, q_info

    # Set up function for computing SAC pi loss
    def compute_loss_pi(self, data):
        state_batch = data['obs']
        if self.state_of_art_model and state_batch.ndim != 4:
            state_batch = state_batch.unsqueeze(dim=1)

        action, (action_probabilities,
                 log_action_probabilities), _ = self.get_action(state_batch)
        qf1_pi = self.critic1(state_batch)
        qf2_pi = self.critic2(state_batch)
        min_qf_pi = torch.min(qf1_pi, qf2_pi)
        inside_term = self.alpha * log_action_probabilities - min_qf_pi
        policy_loss = action_probabilities * inside_term
        policy_loss = policy_loss.mean()
        log_action_probabilities = torch.sum(log_action_probabilities *
                                             action_probabilities,
                                             dim=1)
        # Useful info for logging
        pi_info = dict(LogPi=log_action_probabilities.detach().cpu().numpy())

        return policy_loss, log_action_probabilities, pi_info

    def take_optimisation_step(self,
                               optimizer,
                               network,
                               loss,
                               clipping_norm=None,
                               retain_graph=False):
        if not isinstance(network, list):
            network = [network]
        optimizer.zero_grad()  # reset gradients to 0
        loss.backward(
            retain_graph=retain_graph)  # this calculates the gradients
        if clipping_norm is not None:
            for net in network:
                torch.nn.utils.clip_grad_norm_(
                    net.parameters(),
                    clipping_norm)  # clip gradients to help stabilise training
        optimizer.step()  # this applies the gradients

    def soft_update_of_target_network(self, local_model, target_model, tau):
        """Updates the target network in the direction of the local network but by taking a step size
        less than one so the target network's parameter values trail the local networks. This helps stabilise training"""
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def update(self, data):
        # First run one gradient descent step for Q1 and Q2

        loss_q1, loss_q2, q_info = self.compute_loss_q(data)
        self.take_optimisation_step(
            self.q1_optimizer,
            self.critic1,
            loss_q1,
            5,
        )
        self.take_optimisation_step(
            self.q2_optimizer,
            self.critic2,
            loss_q2,
            5,
        )

        # Record things
        self.logger.store(LossQ=(loss_q1.item() + loss_q2.item()) / 2.,
                          **q_info)

        # Freeze Q-networks so you don't waste computational effort
        # # computing gradients for them during the policy learning step.
        # for p in q_params:
        #     p.requires_grad = False

        # Next run one gradient descent step for pi.

        loss_pi, log_pi, pi_info = self.compute_loss_pi(data)
        # Record things
        self.logger.store(LossPi=loss_pi.item(), **pi_info)

        # # Unfreeze Q-networks so you can optimize it at next DDPG step.
        # for p in q_params:
        #     p.requires_grad = True

        if self.automatic_entropy_tuning:
            alpha_loss = -(self.log_alpha *
                           (log_pi + self.target_entropy).detach()).mean()
            # logger.store(alpha_loss=alpha_loss.item())

        self.take_optimisation_step(
            self.pi_optimizer,
            self.actor,
            loss_pi,
            5,
        )

        with torch.no_grad():
            for p, p_targ in zip(self.critic1.parameters(),
                                 self.critic1_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(self.polyak)
                p_targ.data.add_((1 - self.polyak) * p.data)
            for p, p_targ in zip(self.critic2.parameters(),
                                 self.critic2_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(self.polyak)
                p_targ.data.add_((1 - self.polyak) * p.data)

        if self.automatic_entropy_tuning:
            self.take_optimisation_step(self.alpha_optim, None, alpha_loss,
                                        None)
            self.alpha = self.log_alpha.exp()

    def get_action(self, state):
        """Given the state, produces an action, the probability of the action, the log probability of the action, and
        the argmax action"""
        action_probabilities = self.actor(state)
        max_probability_action = torch.argmax(action_probabilities).unsqueeze(
            0)
        action_distribution = Categorical(action_probabilities)
        action = action_distribution.sample().cpu()
        # Have to deal with situation of 0.0 probabilities because we can't do log 0
        z = action_probabilities == 0.0
        z = z.float() * 1e-8
        log_action_probabilities = torch.log(action_probabilities + z)
        return action, (action_probabilities,
                        log_action_probabilities), max_probability_action

    def test_agent(self):
        for j in range(self.num_test_episodes):
            o, d, ep_ret, ep_len = self.test_env.reset(
                isRandomStart=True), False, 0, 0
            while not (ep_len == self.max_ep_len):
                if self.show_test_render:
                    self.test_env.render()
                # Take deterministic actions at test time
                with torch.no_grad():
                    if self.state_of_art_model and o.ndim == 2:
                        obs = torch.FloatTensor(o).view([1, 1, *self.obs_dim
                                                         ]).to(self.device)
                    else:
                        obs = torch.FloatTensor(o).view([1, *self.obs_dim
                                                         ]).to(self.device)

                    _, (_, _), a = self.get_action(obs)
                o, r, d, _ = self.test_env.step(a.cpu().item())
                ep_ret += r
                ep_len += 1
                text = "Test:  Code: %s,  Epoch: %s,  TestEp_ret: %s,  Testep_len: %s." % \
                       (self.test_env.current_env.code, self.epoch, ep_ret, ep_len)
                self.logger.log_stdout(text)

                if d == 1:  # 资金不足
                    print('test资金不足')
                    break
                elif d == 2:  # 达到索引终点
                    print('test达到合约终点, 重新开始')
                    self.test_env.reset(isRandomStart=True,
                                        total=self.test_env.current_env.total)
                elif d == 3:  # 达到回撤限制
                    print('test达到回撤限制')
                    break

            self.logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    def run(self):
        # Prepare for interaction with environment
        total_steps = self.steps_per_epoch * self.epochs
        start_time = time.time()
        o, ep_ret, ep_len = self.env.reset(), 0, 0
        eps = 1

        t = self.epoch * self.steps_per_epoch if self.last_save_path is not None else 0

        # Main loop: collect experience in env and update/log each epoch
        self.actor.eval()
        while t < total_steps:
            text = "Code: %s,  Epoch: %s,  Episode: %s,  Ep_ret: %s,  ep_len: %s. [%s/%s]" % \
                   (self.env.current_env.code, self.epoch, eps, ep_ret, ep_len, t + 1, total_steps)
            self.logger.log_stdout(text)

            # Until start_steps have elapsed, randomly sample actions
            # from a uniform distribution for better exploration. Afterwards,
            # use the learned policy.
            if t >= self.start_steps:
                with torch.no_grad():
                    if self.state_of_art_model and o.ndim == 2:
                        obs = torch.FloatTensor(o).view([1, 1, *self.obs_dim
                                                         ]).to(self.device)
                    else:
                        obs = torch.FloatTensor(o).view([1, *self.obs_dim
                                                         ]).to(self.device)

                    a, _, _ = self.get_action(obs)
                    a = a.cpu().item()
            else:
                a = np.random.randint(0, self.act_dim)

            # Step the env
            o2, r, d, _ = self.env.step(a)
            ep_ret += r
            ep_len += 1

            # Ignore the "done" signal if it comes from hitting the time
            # horizon (that is, when it's an artificial terminal signal
            # that isn't based on the agent's state)
            d = False if ep_len == self.max_ep_len else d  # 如果长度==最大长度则False,否则

            # Store experience to replay buffer
            if d == 2 or d == 1:  # 控制重置
                done = 1
            else:
                done = 0
            self.replay_buffer.store(o, a, r, o2, done)

            # Super critical, easy to overlook step: make sure to update
            # most recent observation!
            o = o2

            # End of trajectory handling
            if d == 1 or (ep_len == self.max_ep_len
                          ):  # ep_len == max_ep_len是游戏成功时最少ep长度
                o, ep_ret, ep_len = self.env.reset(isRandomStart=False), 0, 0
                eps += 1
            elif d == 2:  # 达到索引终点
                self.env.reset(
                    isRandomStart=False,
                    total=self.env.current_env.total)  #继续下一个合约,但是继承上一次总资产
            elif d == 3:  # 达到回撤限制(目前先不管)
                d

            # Update handling
            if self.replay_buffer.size > self.update_after and t % self.update_times_every_step == 0:
                self.actor.train()
                for j in range(self.update_times_every_step):
                    batch = self.replay_buffer.sample_batch(self.batch_size)
                    self.update(data=batch)
                self.actor.eval()
                # logger.save_epoch_Ret_optimizer_model(save_dict)
                # last_best_Return_per_local = Return_per_local
            # End of epoch handling
            if (
                    t + 1
            ) % self.steps_per_epoch == 0 and self.replay_buffer.size > self.update_after:
                if (
                        t + 1
                ) % self.update_times_every_step == 0:  # 每达到update_times_every_step
                    self.epoch = (t + 1) // self.steps_per_epoch

                    # Save model
                    if proc_id() == 0 and (self.epoch) % self.save_freq == 0:
                        save_dict = {
                            'epoch': self.epoch,
                            'actor': self.actor.state_dict(),
                            'critic1': self.critic1.state_dict(),
                            'critic2': self.critic2.state_dict(),
                            'pi_optimizer': self.pi_optimizer.state_dict(),
                            'q1_optimizer': self.q1_optimizer.state_dict(),
                            'q2_optimizer': self.q2_optimizer.state_dict(),
                            'critic1_targ': self.critic1_targ.state_dict(),
                            'critic2_targ': self.critic2_targ.state_dict(),
                        }
                        self.logger.save_epoch_Ret_optimizer_model(save_dict)

                    self.actor.eval()
                    # Test the performance of the deterministic version of the agent.
                    self.test_agent()

                    # Log info about epoch
                    self.logger.log_tabular('Epoch', self.epoch)
                    # self.logger.log_tabular('EpRet', with_min_and_max=True)
                    self.logger.log_tabular('TestEpRet',
                                            with_min_and_max=False)
                    # self.logger.log_tabular('EpLen', average_only=True)
                    self.logger.log_tabular('TestEpLen', average_only=True)
                    self.logger.log_tabular('TotalEnvInteracts', t)
                    self.logger.log_tabular('Q1Vals', with_min_and_max=True)
                    self.logger.log_tabular('Q2Vals', with_min_and_max=True)
                    self.logger.log_tabular('LogPi', with_min_and_max=True)
                    self.logger.log_tabular('LossPi', average_only=True)
                    self.logger.log_tabular('LossQ', average_only=True)
                    self.logger.log_tabular('Time', time.time() - start_time)
                    # if epoch > 1:
                    #     (time.time() - start_time)/epo
                    self.logger.dump_tabular()

            t += 1
コード例 #23
0
def cvi_ad(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, 
        steps_per_epoch=5000, epochs=100, replay_size=int(1e6), gamma=0.99, alp = 0.8,
        polyak=0.995, lr=1e-3, alpha=0.2, batch_size=100, start_steps=10000, 
        max_ep_len=1000, logger_kwargs=dict(), save_freq=1, decay = None, squash = False):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``mu``       (batch, act_dim)  | Computes mean actions from policy
                                           | given states.
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``. Critical: must be differentiable
                                           | with respect to policy parameters all
                                           | the way through action sampling.
            ``q1``       (batch,)          | Gives one estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q2``       (batch,)          | Gives another estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q1_pi``    (batch,)          | Gives the composition of ``q1`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q1(x, pi(x)).
            ``q2_pi``    (batch,)          | Gives the composition of ``q2`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q2(x, pi(x)).
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. 
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to SAC.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to 
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim, obs_dim, None, None)
    adv_ph = tf.placeholder(dtype = tf.float32, shape = (None,))
    alp_ph = tf.placeholder(dtype =  tf.float32)
    t_step = tf.placeholder(dtype = tf.float32)
    #adv_ph1 = tf.placeholder(dtype = tf.float32, shape = (None,))
    #adv_ph2 = tf.placeholder(dtype = tf.float32, shape = (None,))

    # Main outputs from computation graph
    with tf.variable_scope('main'):
        mu, pi, logp_pi, ad1, ad2, ad1_pi, ad2_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)
    
    # Target value network
    with tf.variable_scope('target'):
        _, _, _, ad1_targ, ad2_targ, _, _, v_targ  = actor_critic(x2_ph, a_ph, **ac_kwargs)
    
    squash_eps = 1e-2
    if squash:
        print("Squashed")
        squash_func = lambda x: tf.sign(x) * (tf.sqrt(tf.abs(x) + 1) - 1) + x * squash_eps
        squash_ifunc = lambda x: tf.sign(x) * ((tf.sqrt(1 + 4 * squash_eps * (tf.abs(x) + 1 + squash_eps)) - 1)** 2 * (1 / (2 * squash_eps))** 2 - 1)
    else:
        print ("Not Squashed")
        squash_func = lambda x: x
        squash_ifunc = lambda x: x
    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in 
                       ['main/pi', 'main/q1', 'main/q2', 'main/v', 'main'])
    print(('\nNumber of parameters: \t pi: %d, \t' + \
           'q1: %d, \t q2: %d, \t v: %d, \t total: %d\n')%var_counts)

    q1 = v + ad1
    q2 = v + ad2
    q1_pi = v + ad1_pi
    q2_pi = v + ad2_pi

    # Min Double-Q:
    min_q_pi = tf.minimum(q1_pi, q2_pi)

    # Targets for Q and V regression
    q_backup = tf.stop_gradient(squash_func(r_ph + gamma*(1-d_ph)*squash_ifunc(v_targ) + alp_ph * adv_ph))
    #q_backup1 = tf.stop_gradient(r_ph + gamma*(1-d_ph)*v_targ + alp * adv_ph1)
    #q_backup2 = tf.stop_gradient(r_ph + gamma*(1-d_ph)*v_targ + alp * adv_ph2)

    v_backup = tf.stop_gradient(squash_func(squash_ifunc(min_q_pi) - alpha * logp_pi))

    # Soft actor-critic losses
    #alp = tf.Variable(0.2,dtype=tf.float32)
    #q_min = tf.minimum(q1,q2)
    pi_loss = tf.reduce_mean(alpha * logp_pi - squash_ifunc(min_q_pi))
    q1_loss = 0.5 * tf.reduce_mean((q_backup - q1)**2)
    q2_loss = 0.5 * tf.reduce_mean((q_backup - q2)**2)
    v_loss = 0.5 * tf.reduce_mean((v_backup - v)**2)
    value_loss = q1_loss + q2_loss + v_loss

    # Policy train op 
    # (has to be separate from value train op, because q1_pi appears in pi_loss)
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi'))

    # Value train op
    # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order)
    value_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    value_params = get_vars('main/q') + get_vars('main/v') 
    with tf.control_dependencies([train_pi_op]):
        train_value_op = value_optimizer.minimize(value_loss, var_list=value_params)

    # Polyak averaging for target variables
    # (control flow because sess.run otherwise evaluates in nondeterministic order)
    with tf.control_dependencies([train_value_op]):
        target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main)
                                  for v_main, v_targ in zip(get_vars('main') , get_vars('target'))])
        # target_update = tf.group([tf.assign(v_targ, tf.cond(tf.not_equal(t_step%1000,0), lambda: v_targ, lambda: v_main))
        #                           for v_main, v_targ in zip(get_vars('main') , get_vars('target'))])

    # All ops to call during one training step
    step_ops = [pi_loss, q1_loss, q2_loss, v_loss, q1, q2, v, logp_pi, 
                train_pi_op, train_value_op, target_update]
    
    # adv_op = squash_ifunc(tf.minimum(q1_targ, q2_targ))-squash_ifunc(v_targ)
    adv_op = squash_ifunc(tf.minimum(ad1_targ, ad2_targ))
    #adv_op1 = q1_targ-v_targ
    #adv_op2 = q2_targ-v_targ

    # Initializing targets to match main variables
    target_init = tf.group([tf.assign(v_targ, v_main)
                              for v_main, v_targ in zip(get_vars('main'), get_vars('target'))])

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph, 'a': a_ph}, 
                                outputs={'mu': mu, 'pi': pi, 'q1': q1, 'q2': q2, 'v': v})

    def get_action(o, deterministic=False):
        act_op = mu if deterministic else pi
        return sess.run(act_op, feed_dict={x_ph: o.reshape(1,-1)})[0]

    def test_agent(n=10):
        global sess, mu, pi, q1, q2, q1_pi, q2_pi
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not(d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time 
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs


    if decay:
       alp_val = 0.2
    else:
       alp_val = alp

    update_step = 0
    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len==max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update 
        # most recent observation!
        o = o2

        if d or (ep_len == max_ep_len):
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            """
            for j in range(ep_len):
                update_step+=1
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {x2_ph: batch['obs1'],
                             a_ph: batch['acts']
                            }
                advantage = sess.run(adv_op , feed_dict)
                #advantage = sess.run([adv_op1, adv_op2] , feed_dict)
          
                feed_dict = {x_ph: batch['obs1'],
                             x2_ph: batch['obs2'],
                             a_ph: batch['acts'],
                             r_ph: batch['rews'],
                             d_ph: batch['done'],
                             t_step: update_step,
                             adv_ph : advantage,
                             alp_ph : alp_val
                             #adv_ph1 : advantage[0],
                             #adv_ph2 : advantage[1]
                            }
                outs = sess.run(step_ops, feed_dict)
                logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2],
                             LossV=outs[3], Q1Vals=outs[4], Q2Vals=outs[5],
                             VVals=outs[6], LogPi=outs[7])

            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0


        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch
            if decay:
               alp_val = eval(decay)(t//steps_per_epoch)

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs-1):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True) 
            logger.log_tabular('Q2Vals', with_min_and_max=True) 
            logger.log_tabular('VVals', with_min_and_max=True) 
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('Time', time.time()-start_time)
            logger.dump_tabular()
コード例 #24
0
def sac1(env_fn,
         actor_critic=core.mlp_actor_critic,
         ac_kwargs=dict(),
         seed=0,
         steps_per_epoch=3000,
         epochs=100,
         replay_size=int(1e6),
         gamma=0.99,
         polyak=0.995,
         lr=1e-4,
         alpha=0.2,
         batch_size=150,
         start_steps=9000,
         max_ep_len=1000,
         logger_kwargs=dict(),
         save_freq=1):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols
            for state, ``x_ph``, and action, ``a_ph``, and returns the main
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``mu``       (batch, act_dim)  | Computes mean actions from policy
                                           | given states.
            ``pi``       (batch, act_dim)  | Samples actions from policy given
                                           | states.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``. Critical: must be differentiable
                                           | with respect to policy parameters all
                                           | the way through action sampling.
            ``q1``       (batch,)          | Gives one estimate of Q* for
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q2``       (batch,)          | Gives another estimate of Q* for
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q1_pi``    (batch,)          | Gives the composition of ``q1`` and
                                           | ``pi`` for states in ``x_ph``:
                                           | q1(x, pi(x)).
            ``q2_pi``    (batch,)          | Gives the composition of ``q2`` and
                                           | ``pi`` for states in ``x_ph``:
                                           | q2(x, pi(x)).
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic
            function you provided to SAC.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target
            networks. Target networks are updated towards main networks
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually
            close to 1.)

        lr (float): Learning rate (used for policy/value/alpha learning).

        alpha (float/'auto'): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.) / 'auto': alpha is automated.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Share information with policy architecture
    ac_kwargs['action_space'] = env.action_space
    ac_kwargs['obs_dim'] = obs_dim
    h_size = ac_kwargs["h_size"]  # hidden size of rnn
    seq_length = ac_kwargs["seq"]  # seq length of rnn

    # Inputs to computation graph
    seq = None  # training and testing doesn't has to have the same seq length
    x_ph, a_ph, r_ph, d_ph = core.placeholders([seq, obs_dim], [seq, act_dim],
                                               [seq, 1], [seq, 1])
    s_t_0 = tf.placeholder(shape=[None, h_size],
                           name="pre_state",
                           dtype="float32")  # zero state

    # Main outputs from computation graph
    outputs, states = cudnn_rnn_cell(x_ph, s_t_0, h_size=ac_kwargs["h_size"])
    # outputs, _ = rnn_cell(x_ph, s_t_0, h_size=ac_kwargs["h_size"])
    # outputs = mlp(outputs, [ac_kwargs["h_size"], ac_kwargs["h_size"]], activation=tf.nn.elu)
    # states = outputs[:, -1, :]

    # if use model predict next state (obs)
    with tf.variable_scope("model"):
        """hidden size for mlp
           h_size for RNN
        """
        s_predict = mlp(tf.concat([outputs, a_ph], axis=-1),
                        list(ac_kwargs["hidden_sizes"]) +
                        [ac_kwargs["h_size"]],
                        activation=tf.nn.relu)
    with tf.variable_scope('main'):
        mu, pi, logp_pi, q1, q2, q1_pi, q2_pi = actor_critic(
            x_ph, a_ph, s_t_0, outputs, states, **ac_kwargs)

    # Target value network
    with tf.variable_scope('target'):
        _, _, _, _, _, q1_pi_, q2_pi_ = actor_critic(x_ph, a_ph, s_t_0,
                                                     outputs, states,
                                                     **ac_kwargs)

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size,
                                 h_size=h_size,
                                 seq_length=seq_length,
                                 flag="seq",
                                 normalize=ac_kwargs["norm"])

    # Count variables
    var_counts = tuple(
        core.count_vars(scope)
        for scope in ['main/pi', 'main/q1', 'main/q2', "model"])
    print(
        '\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d, \t model: %d \n'
        % var_counts)

    if alpha == 'auto':
        # target_entropy = (-np.prod(env.action_space.shape))
        target_entropy = -np.prod(env.action_space.shape)

        log_alpha = tf.get_variable('log_alpha',
                                    dtype=tf.float32,
                                    initializer=ac_kwargs["h0"])
        alpha = tf.exp(log_alpha)

        alpha_loss = tf.reduce_mean(
            -log_alpha * tf.stop_gradient(logp_pi[:, :-1, :] + target_entropy))
        # Use smaller learning rate to make alpha decay slower
        alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr,
                                                 name='alpha_optimizer')
        train_alpha_op = alpha_optimizer.minimize(loss=alpha_loss,
                                                  var_list=[log_alpha])

    # model train op
    # we can't use s_T to predict s_T+1
    delta_x = tf.stop_gradient(
        outputs[:, 1:, :] -
        outputs[:, :-1, :])  # predict delta obs instead of obs
    # model_loss = tf.abs((1 - d_ph[:, :-1, :]) * (s_predict[:, :-1, :] - delta_x[:, :, :obs_dim-act_dim]))
    model_loss = tf.abs(
        (1 - d_ph[:, :-1, :]) *
        (s_predict[:, :-1, :] - delta_x))  # how about "done" state
    model_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    if "m" in ac_kwargs["opt"]:
        value_params_1 = get_vars('model') + get_vars('rnn')
    else:
        value_params_1 = get_vars('model')
    # opt for optimize model
    train_model_op = model_optimizer.minimize(tf.reduce_mean(model_loss),
                                              var_list=value_params_1)

    # Targets for Q and V regression
    v_backup = tf.stop_gradient(tf.minimum(q1_pi_, q2_pi_) - alpha * logp_pi)
    # clip curiosity
    in_r = tf.stop_gradient(
        tf.reduce_mean(tf.clip_by_value(model_loss, 0, 64),
                       axis=-1,
                       keepdims=True))
    beta = tf.placeholder(dtype=tf.float32, shape=(), name="beta")
    # beta = ac_kwargs["beta"]  # adjust internal reward
    # can we prove the optimal value of beta
    # I think beta should decrease with training going on
    # beta = alpha  # adjust internal reward
    q_backup = r_ph[:, :-1, :] + beta * in_r + gamma * (
        1 - d_ph[:, :-1, :]) * v_backup[:, 1:, :]

    # Soft actor-critic losses
    # pi_loss = tf.reduce_mean(alpha * logp_pi[:, :-1, :] - q1_pi[:, :-1, :])
    pi_loss = tf.reduce_mean(alpha * logp_pi - q1_pi)
    # in some case, the last timestep Q function is super important so maybe we can use weight sum of loss
    # calculate last timestep separately for convince
    # q1_loss = 0.5 * tf.reduce_mean((q1[:, :-1, :] - q_backup) ** 2)
    q1_loss = tf.reduce_mean((q1[:, :-1, :] - q_backup)**2)
    q2_loss = tf.reduce_mean((q2[:, :-1, :] - q_backup)**2)
    # q2_loss = 0.5 * tf.reduce_mean((q2[:, :-1, :] - q_backup) ** 2)
    Q_loss = q1[:, :-1, :] - q_backup
    P_loss = alpha * logp_pi - q1_pi
    value_loss = q1_loss + q2_loss

    # Policy train op
    # (has to be separate from value train op, because q1_pi appears in pi_loss)
    # train model first
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    with tf.control_dependencies([train_model_op]):
        train_pi_op = pi_optimizer.minimize(pi_loss,
                                            var_list=get_vars('main/pi'))

    # Value train op
    # (control dep of train_pi_op because sess.run otherwise evaluates in nondeterministic order)
    value_optimizer = tf.train.AdamOptimizer(learning_rate=lr)
    if "q" in ac_kwargs["opt"]:
        value_params = get_vars('main/q') + get_vars('rnn')
    else:
        value_params = get_vars('main/q')

    with tf.control_dependencies([train_pi_op]):
        train_value_op = value_optimizer.minimize(value_loss,
                                                  var_list=value_params)

    # Polyak averaging for target variables
    # (control flow because sess.run otherwise evaluates in non_deterministic order)
    with tf.control_dependencies([train_value_op]):
        target_update = tf.group([
            tf.assign(v_targ, polyak * v_targ + (1 - polyak) * v_main)
            for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
        ])

    # All ops to call during one training step
    if isinstance(alpha, Number):
        step_ops = [
            pi_loss, q1_loss, q2_loss, q1, q2, logp_pi,
            tf.identity(alpha), model_loss, train_model_op, train_pi_op,
            train_value_op, target_update
        ]
    else:
        step_ops = [
            pi_loss, q1_loss, q2_loss, q1, q2, logp_pi, alpha, model_loss,
            train_model_op, train_pi_op, train_value_op, target_update,
            train_alpha_op, Q_loss, P_loss
        ]

    # Initializing targets to match main variables
    target_init = tf.group([
        tf.assign(v_targ, v_main)
        for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
    ])

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess,
                          inputs={
                              'x': x_ph,
                              'a': a_ph
                          },
                          outputs={
                              'mu': mu,
                              'pi': pi,
                              'q1': q1,
                              'q2': q2
                          })

    def get_action(o, s_t_0_, mu, pi, states, deterministic=False):
        """s_t_0_  starting step for testing 1 H"""

        act_op = mu if deterministic else pi
        action, s_t_1_ = sess.run(
            [act_op, states],
            feed_dict={
                x_ph: o.reshape(1, 1, obs_dim),
                a_ph: np.zeros([1, 1, act_dim]),
                s_t_0: s_t_0_
            })
        return action.reshape(act_dim), s_t_1_

    def test_agent(mu, pi, states, n=10):
        # global sess, mu, pi, q1, q2, q1_pi, q2_pi
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            s_0 = np.zeros([1, h_size])
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                a, s_1 = get_action(o, s_0, mu, pi, states, deterministic=True)
                s_0 = s_1
                o, r, d, _ = test_env.step(a)
                # test_env.render()
                ep_ret += r
                ep_len += 1
                # replay_buffer.store(o.reshape([1, obs_dim]), a.reshape([1, act_dim]), r, d)
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    # start = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs

    # Main loop: collect experience in env and update/log each epoch
    s_t_0_ = np.zeros([1, h_size])
    episode = 0

    for t in range(total_steps + 1):
        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t == 0:
            start = time.time()

        if t > start_steps:
            # s_t_0_store = s_t_0_    # hidden state stored in buffer
            a, s_t_1_ = get_action(o,
                                   s_t_0_,
                                   mu,
                                   pi,
                                   states,
                                   deterministic=False)
            s_t_0_ = s_t_1_
        else:
            # s_t_0_store = s_t_0_
            # print(s_t_0_.shape)
            _, s_t_1_ = get_action(o,
                                   s_t_0_,
                                   mu,
                                   pi,
                                   states,
                                   deterministic=False)
            s_t_0_ = s_t_1_
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(
            a
        )  # give back o_t_1 we need store o_t_0 because that is what cause a_t_0
        # print(r)
        # env.render()
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o.reshape([1,
                                       obs_dim]), s_t_0_.reshape([1, h_size]),
                            a.reshape([1, act_dim]), r, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of episode. Training (ep_len times).
        if d or (ep_len == max_ep_len):
            """
            Perform all SAC updates at the end of the trajectory.
            This is a slight difference from the SAC specified in the
            original paper.
            """
            # fps = (time.time() - start)/200
            # print("{} fps".format(200 / (time.time() - start)))
            print(ep_len)
            episode += 1
            start = time.time()
            beta_ = ac_kwargs["beta"] * (1 - t / total_steps)
            # beta_ = ac_kwargs["beta"] * (1 / t ** 0.5)
            for j in range(int(ep_len)):
                batch = replay_buffer.sample_batch(batch_size)
                # maybe we can store starting state
                feed_dict = {
                    x_ph: batch['obs1'],
                    s_t_0: batch[
                        's_t_0'],  # all zero matrix for zero state in training
                    a_ph: batch['acts'],
                    r_ph: batch['rews'],
                    d_ph: batch['done'],
                    beta: beta_,
                }
                for _ in range(ac_kwargs["tm"] - 1):
                    batch = replay_buffer.sample_batch(batch_size)
                    # maybe we can store starting state
                    feed_dict = {
                        x_ph: batch['obs1'],
                        s_t_0:
                        batch['s_t_0'],  # stored zero state for training
                        a_ph: batch['acts'],
                        r_ph: batch['rews'],
                        d_ph: batch['done'],
                        beta: beta_,
                    }
                    _ = sess.run(train_model_op, feed_dict)
                outs = sess.run(step_ops, feed_dict)
                # print(outs)
                logger.store(LossPi=outs[0],
                             LossQ1=outs[1],
                             LossQ2=outs[2],
                             Q1Vals=outs[3].flatten(),
                             Q2Vals=outs[4].flatten(),
                             LogPi=outs[5].flatten(),
                             Alpha=outs[6],
                             beta=beta_,
                             model_loss=outs[7].flatten())

            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
            s_t_0_ = np.zeros([1, h_size
                               ])  # reset s_t_0_ when one episode is finished
            print("one episode duration:", time.time() - start)
            start = time.time()

        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch
            if epoch % 50 == 0:
                np.save("model__mq_loss_{}".format(epoch), outs[7])
                np.save("Q_mq_loss_{}".format(epoch), outs[-2])
                np.save("P_mq_loss_{}".format(epoch), outs[-1])

            # Save model
            # if (epoch % save_freq == 0) or (epoch == epochs - 1):
            #     logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent(mu, pi, states)

            # logger.store(): store the data; logger.log_tabular(): log the data; logger.dump_tabular(): write the data
            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('Episode', episode)
            logger.log_tabular('name', name)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Alpha', average_only=True)
            logger.log_tabular('beta', average_only=True)
            logger.log_tabular('model_loss', with_min_and_max=True)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #25
0
def td3(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=5000,
        epochs=100,
        replay_size=int(1e6),
        gamma=0.99,
        polyak=0.995,
        pi_lr=1e-3,
        q_lr=1e-3,
        batch_size=100,
        start_steps=10000,
        act_noise=0.1,
        target_noise=0.2,
        noise_clip=0.5,
        policy_delay=2,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=1):
    """

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Deterministically computes actions
                                           | from policy given states.
            ``q1``       (batch,)          | Gives one estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q2``       (batch,)          | Gives another estimate of Q* for 
                                           | states in ``x_ph`` and actions in
                                           | ``a_ph``.
            ``q1_pi``    (batch,)          | Gives the composition of ``q1`` and 
                                           | ``pi`` for states in ``x_ph``: 
                                           | q1(x, pi(x)).
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to TD3.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs to run and train agent.

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target 
            networks. Target networks are updated towards main networks 
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow 
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually 
            close to 1.)

        pi_lr (float): Learning rate for policy.

        q_lr (float): Learning rate for Q-networks.

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration.

        act_noise (float): Stddev for Gaussian exploration noise added to 
            policy at training time. (At test time, no noise is added.)

        target_noise (float): Stddev for smoothing noise added to target 
            policy.

        noise_clip (float): Limit for absolute value of target policy 
            smoothing noise.

        policy_delay (int): Policy will only be updated once every 
            policy_delay times for each update of the Q-networks.

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    tf.set_random_seed(seed)
    np.random.seed(seed)

    env, test_env = env_fn(), env_fn()
    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph, x2_ph, r_ph, d_ph = core.placeholders(obs_dim, act_dim,
                                                      obs_dim, None, None)

    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space below.                     #
    #                                                                         #
    #=========================================================================#

    # Main outputs from computation graph
    with tf.variable_scope('main'):
        pi, q1, q2, q1_pi = actor_critic(x_ph, a_ph, **ac_kwargs)
    # Target policy network
    with tf.variable_scope('target'):
        pi_targ, _, _, _ = actor_critic(x2_ph, a_ph, **ac_kwargs)
    # Target Q networks
    with tf.variable_scope('target', reuse=True):
        # Target policy smoothing, by adding clipped noise to target actions
        pi_noise_targ = get_pi_noise_clipped(pi,
                                             noise_scale=target_noise,
                                             noise_clip=noise_clip,
                                             act_limit=act_limit)
        # Target Q-values, using action from smoothed target policy
        _, q1_targ, q2_targ, _ = actor_critic(x2_ph, pi_noise_targ,
                                              **ac_kwargs)

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size)

    # Count variables
    var_counts = tuple(
        core.count_vars(scope)
        for scope in ['main/pi', 'main/q1', 'main/q2', 'main'])
    print(
        '\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d, \t total: %d\n'
        % var_counts)

    # Bellman backup for Q functions, using Clipped Double-Q targets
    q_targ = get_q_target(q1_targ, q2_targ, r_ph, d=d_ph, gamma=0.99)
    # TD3 losses
    pi_loss = -tf.reduce_mean(q1_pi)
    q1_loss = tf.losses.mean_squared_error(q_targ, q1)
    q2_loss = tf.losses.mean_squared_error(q_targ, q2)
    q_loss = q1_loss + q2_loss

    #=========================================================================#
    #                                                                         #
    #           All of your code goes in the space above.                     #
    #                                                                         #
    #=========================================================================#

    # Separate train ops for pi, q
    pi_optimizer = tf.train.AdamOptimizer(learning_rate=pi_lr)
    q_optimizer = tf.train.AdamOptimizer(learning_rate=q_lr)
    train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi'))
    train_q_op = q_optimizer.minimize(q_loss, var_list=get_vars('main/q'))

    # Polyak averaging for target variables
    target_update = tf.group([
        tf.assign(v_targ, polyak * v_targ + (1 - polyak) * v_main)
        for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
    ])

    # Initializing targets to match main variables
    target_init = tf.group([
        tf.assign(v_targ, v_main)
        for v_main, v_targ in zip(get_vars('main'), get_vars('target'))
    ])

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    sess.run(target_init)

    # Setup model saving
    logger.setup_tf_saver(sess,
                          inputs={
                              'x': x_ph,
                              'a': a_ph
                          },
                          outputs={
                              'pi': pi,
                              'q1': q1,
                              'q2': q2
                          })

    def get_action(o, noise_scale):
        a = sess.run(pi, feed_dict={x_ph: o.reshape(1, -1)})
        a += noise_scale * np.random.randn(act_dim)
        return np.clip(a, -act_limit, act_limit)

    def test_agent(n=10):
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time (noise_scale=0)
                o, r, d, _ = test_env.step(get_action(o, 0))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs

    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):
        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy (with some noise, via act_noise). 
        """
        if t > start_steps:
            a = get_action(o, act_noise)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        if d or (ep_len == max_ep_len):
            """
            Perform all TD3 updates at the end of the trajectory
            (in accordance with source code of TD3 published by
            original authors).
            """
            for j in range(ep_len):
                batch = replay_buffer.sample_batch(batch_size)
                feed_dict = {
                    x_ph: batch['obs1'],
                    x2_ph: batch['obs2'],
                    a_ph: batch['acts'],
                    r_ph: batch['rews'],
                    d_ph: batch['done']
                }
                q_step_ops = [q_loss, q1, q2, train_q_op]
                outs = sess.run(q_step_ops, feed_dict)
                logger.store(LossQ=outs[0], Q1Vals=outs[1], Q2Vals=outs[2])

                if j % policy_delay == 0:
                    # Delayed policy update
                    outs = sess.run([pi_loss, train_pi_op, target_update],
                                    feed_dict)
                    logger.store(LossPi=outs[0])

            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # End of epoch wrap-up
        if t > 0 and t % steps_per_epoch == 0:
            epoch = t // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs - 1):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
コード例 #26
0
def sac_adapt_fast(env_fn,
                   hidden_sizes=[256, 256],
                   seed=0,
                   steps_per_epoch=1000,
                   epochs=1000,
                   replay_size=int(1e6),
                   gamma=0.99,
                   polyak=0.995,
                   lr=3e-4,
                   alpha=0.2,
                   batch_size=256,
                   start_steps=10000,
                   max_ep_len=1000,
                   save_freq=1,
                   save_model=False,
                   auto_alpha=True,
                   grad_clip=-1,
                   logger_store_freq=100,
                   logger_kwargs=dict(),
                   use_deterministic_action=False):
    """
    Largely following OpenAI documentation, but a bit different
    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        hidden_sizes: number of entries is number of hidden layers
            each entry in this list indicate the size of that hidden layer.
            applies to all networks

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch. Note the epoch here is just logging epoch
            so every this many steps a logging to stdouot and also output file will happen
            note: not to be confused with training epoch which is a term used often in literature for all kinds of
            different things

        epochs (int): Number of epochs to run and train agent. Usage of this term can be different in different
            algorithms, use caution. Here every epoch you get new logs

        replay_size (int): Maximum length of replay buffer.

        gamma (float): Discount factor. (Always between 0 and 1.)

        polyak (float): Interpolation factor in polyak averaging for target
            networks. Target networks are updated towards main networks
            according to:

            .. math:: \\theta_{\\text{targ}} \\leftarrow
                \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta

            where :math:`\\rho` is polyak. (Always between 0 and 1, usually
            close to 1.)

        lr (float): Learning rate (used for both policy and value learning).

        alpha (float): Entropy regularization coefficient. (Equivalent to
            inverse of reward scale in the original SAC paper.)

        batch_size (int): Minibatch size for SGD.

        start_steps (int): Number of steps for uniform-random action selection,
            before running real policy. Helps exploration. However during testing the action always come from policy

        max_ep_len (int): Maximum length of trajectory / episode / rollout. Environment will get reseted if
        timestep in an episode excedding this number

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_model (bool): set to True if want to save the trained agent

        auto_alpha: set to True to use the adaptive alpha scheme, target entropy will be set automatically

        grad_clip: whether to use gradient clipping. < 0 means no clipping

        logger_store_freq: how many steps to log debugging info, typically don't need to change

    """
    """set up logger"""
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    env, test_env = env_fn(), env_fn()

    ## seed torch and numpy
    torch.manual_seed(seed)
    np.random.seed(seed)

    ## seed environment along with env action space so that everything about env is seeded
    env.seed(seed)
    env.action_space.np_random.seed(seed)
    test_env.seed(seed + 10000)
    test_env.action_space.np_random.seed(seed + 10000)

    obs_dim = env.observation_space.shape[0]
    act_dim = env.action_space.shape[0]

    # if environment has a smaller max episode length, then use the environment's max episode length
    max_ep_len = env._max_episode_steps if max_ep_len > env._max_episode_steps else max_ep_len

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    # we need .item() to convert it from numpy float to python float
    act_limit = env.action_space.high[0].item()

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim,
                                 act_dim=act_dim,
                                 size=replay_size)
    """
    Auto tuning alpha
    """
    if auto_alpha:
        target_entropy = -np.prod(env.action_space.shape).item()  # H
        log_alpha = torch.zeros(1, requires_grad=True)
        alpha_optim = optim.Adam([log_alpha], lr=lr)
    else:
        target_entropy, log_alpha, alpha_optim = None, None, None

    def test_agent(n=1):
        """
        This will test the agent's performance by running n episodes
        During the runs, the agent only take deterministic action, so the
        actions are not drawn from a distribution, but just use the mean
        :param n: number of episodes to run the agent
        """
        ep_return_list = np.zeros(n)
        for j in range(n):
            o, r, d, ep_ret, ep_len = test_env.reset(), 0, False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                a = policy_net.get_env_action(o, deterministic=True)
                o, r, d, _ = test_env.step(a)
                ep_ret += r
                ep_len += 1
            ep_return_list[j] = ep_ret
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_steps = steps_per_epoch * epochs
    """init all networks"""
    # see line 1
    policy_net = TanhGaussianPolicySACAdapt(obs_dim,
                                            act_dim,
                                            hidden_sizes,
                                            action_limit=act_limit)
    q1_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)
    q2_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)

    q1_target_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)
    q2_target_net = Mlp(obs_dim + act_dim, 1, hidden_sizes)

    # see line 2: copy parameters from value_net to target_value_net
    q1_target_net.load_state_dict(q1_net.state_dict())
    q2_target_net.load_state_dict(q2_net.state_dict())

    # set up optimizers
    policy_optimizer = optim.Adam(policy_net.parameters(), lr=lr)
    q1_optimizer = optim.Adam(q1_net.parameters(), lr=lr)
    q2_optimizer = optim.Adam(q2_net.parameters(), lr=lr)

    # mean squared error loss for v and q networks
    mse_criterion = nn.MSELoss()

    # Main loop: collect experience in env and update/log each epoch
    # NOTE: t here is the current number of total timesteps used
    # it is not the number of timesteps passed in the current episode
    current_update_index = 0
    for t in range(total_steps):
        """
        Until start_steps have elapsed, randomly sample actions
        from a uniform distribution for better exploration. Afterwards, 
        use the learned policy. 
        """
        if t > start_steps:
            a = policy_net.get_env_action(
                o, deterministic=use_deterministic_action)
        else:
            a = env.action_space.sample()
        # Step the env, get next observation, reward and done signal
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1

        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d

        # Store experience (observation, action, reward, next observation, done) to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2
        """perform update"""
        if replay_buffer.size >= batch_size:
            # get data from replay buffer
            batch = replay_buffer.sample_batch(batch_size)
            obs_tensor = Tensor(batch['obs1'])
            obs_next_tensor = Tensor(batch['obs2'])
            acts_tensor = Tensor(batch['acts'])
            # unsqueeze is to make sure rewards and done tensors are of the shape nx1, instead of n
            # to prevent problems later
            rews_tensor = Tensor(batch['rews']).unsqueeze(1)
            done_tensor = Tensor(batch['done']).unsqueeze(1)
            """
            now we do a SAC update, following the OpenAI spinup doc
            check the openai sac document psudocode part for reference
            line nubmers indicate lines in psudocode part
            we will first compute each of the losses
            and then update all the networks in the end
            """
            # see line 12: get a_tilda, which is newly sampled action (not action from replay buffer)
            """get q loss"""
            with torch.no_grad():
                a_tilda_next, _, _, log_prob_a_tilda_next, _, _ = policy_net.forward(
                    obs_next_tensor)
                q1_next = q1_target_net(
                    torch.cat([obs_next_tensor, a_tilda_next], 1))
                q2_next = q2_target_net(
                    torch.cat([obs_next_tensor, a_tilda_next], 1))

                min_next_q = torch.min(q1_next,
                                       q2_next) - alpha * log_prob_a_tilda_next
                y_q = rews_tensor + gamma * (1 - done_tensor) * min_next_q

            # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
            q1_prediction = q1_net(torch.cat([obs_tensor, acts_tensor], 1))
            q1_loss = mse_criterion(q1_prediction, y_q)
            q2_prediction = q2_net(torch.cat([obs_tensor, acts_tensor], 1))
            q2_loss = mse_criterion(q2_prediction, y_q)
            """
            get policy loss
            """
            a_tilda, mean_a_tilda, log_std_a_tilda, log_prob_a_tilda, _, _ = policy_net.forward(
                obs_tensor)

            # see line 12: second equation
            q1_a_tilda = q1_net(torch.cat([obs_tensor, a_tilda], 1))
            q2_a_tilda = q2_net(torch.cat([obs_tensor, a_tilda], 1))
            min_q1_q2_a_tilda = torch.min(q1_a_tilda, q2_a_tilda)

            # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
            policy_loss = (alpha * log_prob_a_tilda - min_q1_q2_a_tilda).mean()
            """
            alpha loss, update alpha
            """
            if auto_alpha:
                alpha_loss = -(
                    log_alpha *
                    (log_prob_a_tilda + target_entropy).detach()).mean()

                alpha_optim.zero_grad()
                alpha_loss.backward()
                if grad_clip > 0:
                    nn.utils.clip_grad_norm_(log_alpha, grad_clip)
                alpha_optim.step()

                alpha = log_alpha.exp().item()
            else:
                alpha_loss = 0
            """update networks"""
            q1_optimizer.zero_grad()
            q1_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(q1_net.parameters(), grad_clip)
            q1_optimizer.step()

            q2_optimizer.zero_grad()
            q2_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(q2_net.parameters(), grad_clip)
            q2_optimizer.step()

            policy_optimizer.zero_grad()
            policy_loss.backward()
            if grad_clip > 0:
                nn.utils.clip_grad_norm_(policy_net.parameters(), grad_clip)
            policy_optimizer.step()

            # see line 16: update target value network with value network
            soft_update_model1_with_model2(q1_target_net, q1_net, polyak)
            soft_update_model1_with_model2(q2_target_net, q2_net, polyak)

            current_update_index += 1
            if current_update_index % logger_store_freq == 0:
                # store diagnostic info to logger
                logger.store(LossPi=policy_loss.item(),
                             LossQ1=q1_loss.item(),
                             LossQ2=q2_loss.item(),
                             LossAlpha=alpha_loss.item(),
                             Q1Vals=q1_prediction.detach().numpy(),
                             Q2Vals=q2_prediction.detach().numpy(),
                             Alpha=alpha,
                             LogPi=log_prob_a_tilda.detach().numpy())

        if d or (ep_len == max_ep_len):
            """when episode terminates, log info about this episode, then reset"""
            ## store episode return and length to logger
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            ## reset environment
            o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # End of epoch wrap-up
        if (t + 1) % steps_per_epoch == 0:
            epoch = t // steps_per_epoch
            """
            Save pytorch model, very different from tensorflow version
            We need to save the environment, the state_dict of each network
            and also the state_dict of each optimizer
            """
            if save_model:
                sac_state_dict = {
                    'env': env,
                    'policy_net': policy_net.state_dict(),
                    'q1_net': q1_net.state_dict(),
                    'q2_net': q2_net.state_dict(),
                    'q1_target_net': q1_target_net.state_dict(),
                    'q2_target_net': q2_target_net.state_dict(),
                    'policy_opt': policy_optimizer,
                    'q1_opt': q1_optimizer,
                    'q2_opt': q2_optimizer,
                    'log_alpha': log_alpha,
                    'alpha_opt': alpha_optim,
                    'target_entropy': target_entropy
                }
                if (epoch % save_freq == 0) or (epoch == epochs - 1):
                    logger.save_state(sac_state_dict, None)
            # use joblib.load(fname) to load

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('Alpha', with_min_and_max=True)
            logger.log_tabular('LossAlpha', average_only=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ1', average_only=True)
            logger.log_tabular('LossQ2', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()
            sys.stdout.flush()
コード例 #27
0
def ppo(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
        steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
        vf_lr=1e-3, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=100000,
        target_kl=0.01, logger_kwargs=dict(), save_freq=10, **kwargs):
    """
    Proximal Policy Optimization (by clipping),

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
            module. The ``step`` method should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing
                                           | the log probability, according to
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical:
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while
            still profiting (improving the objective function)? The new policy
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`.

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    # test_env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']

        # Policy loss
        pi, logp = ac.pi(obs.reshape(local_steps_per_epoch, 960), act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs.reshape(local_steps_per_epoch, 960)) - ret) ** 2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log('Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old, LossV=v_l_old,
                     KL=kl, Entropy=ent, ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # def test_agent():
    #     for j in range(10):
    #         o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
    #         while not d:
    #             # if show_test_render:
    #             #     test_env.render()
    #             # Take deterministic actions at test time
    #             with torch.no_grad():
    #                 _, (_, _), a = ac.pi._distribution(torch.FloatTensor([o]))
    #             o, r, d, _ = test_env.step(a.cpu().item())
    #             ep_ret += r
    #             ep_len += 1
    #         logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32).view(-1))
            torch.FloatTensor()
            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' % ep_len, flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32).view(-1))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    logger.store(TotalRet=env.current_env.total)
                o, ep_ret, ep_len = env.reset(isRandomStart=True), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()
        # ac.eval()
        # test_agent()
        # ac.train()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('TotalRet', with_min_and_max=True)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
コード例 #28
0
ファイル: ddpg.py プロジェクト: shariqahn/UROPFall2020
class MultiTaskDDPGAutoQuery(MultiTaskDDPG):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        logger_kwargs = setup_logger_kwargs('MultiTaskDDPGAutoQuery')
        self.logger = EpochLogger(**logger_kwargs)
        self.logger.save_config(globals())
        self.init_query = False
        self.init_reward = False
        self.query_reward = 0

    def reset(self, reward_function):
        self.reward_function = reward_function
        self.init_reward = False
        self.query_reward = 0

    def observe(self, state, action, next_state, reward, done):
        # use this transition to augment state properly - only the first time
        if not self.init_query:
            self.query_state = state
            self.query_action = action
            self.query_next_state = next_state
            self.init_query = True
        if not self.init_reward:
            self.query_reward = self.reward_function(self.query_state,
                                                     self.query_action,
                                                     self.query_next_state)
            self.init_reward = True

        state = self.process_state(state)
        next_state = self.process_state(next_state)

        self.replay_buffer.store(state, action, reward, next_state, done)
        if self.step_count >= self.update_after and self.step_count % self.update_every == 0:
            for _ in range(self.update_every):
                batch = self.replay_buffer.sample_batch(self.batch_size)
                self.update(data=batch)

    def get_action(self, state, exploit=False):
        # for first call, will add random junk to processed state bc no transition yet
        if (self.init_query) and (not self.init_reward):
            self.query_reward = self.reward_function(self.query_state,
                                                     self.query_action,
                                                     self.query_next_state)
            self.init_reward = True

        processed_state = self.process_state(state)
        if not self.net:
            self.init_net(processed_state)

        # state is actually observation
        self.step_count += 1
        if self.step_count <= self.start_steps:
            return self.action_space.sample()

        a = self.ac.act(torch.as_tensor(processed_state, dtype=torch.float32))
        if not exploit:
            a += self.act_noise * np.random.randn(self.act_dim)
        return np.clip(a, -self.act_limit, self.act_limit)

    def process_state(self, state):
        return np.append(state, self.query_reward)
コード例 #29
0
def bc_ue_ptb_learn(env_set="Hopper-v2",
                    seed=0,
                    buffer_type="FinalSigma0.5",
                    buffer_seed=0,
                    buffer_size='1000K',
                    cut_buffer_size='1000K',
                    mcue_seed=1,
                    qloss_k=10000,
                    qgt_seed=0,
                    qlearn_type='learn_all_data',
                    border=0.75,
                    clip=0.85,
                    update_type='e',
                    eval_freq=float(1e3),
                    max_timesteps=float(1e6),
                    lr=1e-3,
                    lag_lr=1e-3,
                    search_lr=3e-2,
                    wd=0,
                    epsilon_base=1,
                    logger_kwargs=dict()):
    """parameters |max_timesteps|, |eval_freq|:
       for BC_ue_border_perturb_c, Totalsteps means the number of minibatch updates (default batch size=100)
       for BC_ue_border_perturb_5,
       for BC_ue_border_perturb_e, Totalsteps means the number of updates on each datapoint, i.e., a step is
                                   an iteration of one optimization step on each data in the buffer"""

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("running on device:", device)
    """set up logger"""
    global logger
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    file_name = "BCue_per_e_%s_%s" % (env_set, seed)
    buffer_name = "%s_%s_%s_%s" % (buffer_type, env_set, buffer_seed,
                                   buffer_size)
    setting_name = "%s_r%s_g%s" % (buffer_name, 1000, 0.99)
    print
    ("---------------------------------------")
    print
    ("Settings: " + setting_name)
    print
    ("---------------------------------------")

    if not os.path.exists("./results"):
        os.makedirs("./results")

    env = gym.make(env_set)
    test_env = gym.make(env_set)

    # Set seeds
    env.seed(seed)
    test_env.seed(seed)
    env.action_space.np_random.seed(seed)
    test_env.action_space.np_random.seed(seed)
    torch.manual_seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]
    max_action = float(env.action_space.high[0])
    action_range = float(env.action_space.high[0]) - float(
        env.action_space.low[0])
    print('env', env_set, 'action range:', action_range)

    # Print out config used in MC Upper Envelope training
    rollout_list = [None, 1000, 200, 100, 10]
    k_list = [10000, 1000, 100]
    print('testing MClength:', rollout_list[mcue_seed % 10])
    print('Training loss ratio k:', k_list[mcue_seed // 10])

    selection_info = 'ue_border%s' % border
    selection_info += '_clip%s' % clip if clip is not None else ''
    print('selection_info:', selection_info)
    # Load the ue border selected buffer
    selected_buffer = utils.SARSAReplayBuffer()
    if buffer_size != cut_buffer_size:
        buffer_name = buffer_name + '_cutfinal' + cut_buffer_size

    selected_buffer.load(selection_info + '_' + buffer_name)
    buffer_length = selected_buffer.get_length()
    print(buffer_length)
    print('buffer setting:', selection_info + '_' + buffer_name)

    # Load the Q net trained with regression on Gts
    # And Load the corresponding Gts to the selected buffer
    selected_gts = np.load('./results/sele%s_ueMC_%s_Gt.npy' %
                           (selection_info, setting_name),
                           allow_pickle=True)

    if qlearn_type == 'learn_all_data':
        verbose_qnet = 'alldata_qgts%s' % qgt_seed + 'lok=%s' % qloss_k

    elif qlearn_type == 'learn_border_data':
        verbose_qnet = 'uebor%s_qgts%s' % (border, qgt_seed) if clip is None \
                       else 'uebor%s_clip%s_qgts%s' % (border, clip, qgt_seed)
        verbose_qnet += 'lok=%s' % qloss_k
    else:
        raise ValueError

    print('verbose_qnet:', verbose_qnet)

    Q_from_gt = QNet(state_dim, action_dim, activation='relu')
    Q_from_gt.load_state_dict(
        torch.load('%s/%s_Qgt.pth' %
                   ("./pytorch_models", setting_name + '_' + verbose_qnet)))
    print('load Qnet from',
          '%s/%s_UE.pth' % ("./pytorch_models", setting_name))

    # choose the epsilon plan for the constraints
    if update_type == 'c':
        epsilon = epsilon_plan(epsilon_base, action_range, selected_buffer, selected_gts, Q_from_gt, device,\
                               plan='common')
    else:
        epsilon = torch.FloatTensor([epsilon_base])
        print('one epsilon:', epsilon)

    print('policy train starts --')
    '''Initialize policy of the update type'''
    print("Updating approach: BC_ue_border_perturb_%s" % update_type)
    if update_type == "c":
        policy = BC_ue_border_perturb_c.BC_ue_perturb(state_dim, action_dim, max_action,\
                     lr=lr, lag_lr=lag_lr, wd=wd, num_lambda=buffer_length, Q_from_gt=Q_from_gt )
    elif update_type == "5":
        policy = BC_ue_border_perturb_5.BC_ue_perturb(state_dim, action_dim, max_action, \
                                                      lr=lr, lag_lr=lag_lr, wd=wd, Q_from_gt=Q_from_gt)
    elif update_type == "e":
        policy = BC_ue_border_perturb_e.BC_ue_perturb(state_dim, action_dim, max_action, \
                                                      lr=lr, wd=wd, Q_from_gt=Q_from_gt)
        policy.train_a_tilda(selected_buffer,
                             max_updates=50,
                             search_lr=search_lr,
                             epsilon=epsilon)

    episode_num = 0
    done = True

    training_iters, epoch = 0, 0
    while training_iters < max_timesteps:
        epoch += 1
        if update_type == 'e':
            pol_vals = policy.behavioral_cloning(iterations=int(eval_freq),
                                                 logger=logger)
        else:  # "5" and "c"
            pol_vals = policy.train(selected_buffer,
                                    iterations=int(eval_freq),
                                    epsilon=epsilon,
                                    logger=logger)

        avgtest_reward = evaluate_policy(policy, test_env)
        training_iters += eval_freq

        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('AverageTestEpRet', avgtest_reward)
        logger.log_tabular('TotalSteps', training_iters)

        if update_type == 'c':
            logger.log_tabular('BCLoss', average_only=True)
            logger.log_tabular('ActorLoss', average_only=True)
            logger.log_tabular('LambdaMax', average_only=True)
            logger.log_tabular('LambdaMin', average_only=True)
            logger.log_tabular('ConstraintViolated', with_min_and_max=True)
        elif update_type == '5':
            logger.log_tabular('BCLoss', average_only=True)
            logger.log_tabular('ActorLoss', average_only=True)
            logger.log_tabular('Lambda', average_only=True)
            logger.log_tabular('ConstraintViolatedValue', average_only=True)

        elif update_type == 'e':
            logger.log_tabular('BCLoss', average_only=True)

        logger.dump_tabular()
コード例 #30
0
def vpg(env,
        actor_critic=MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_v_iters=80,
        max_ep_len=1000,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Vanilla Policy Gradient 
    (with GAE 0 for advantage estimation)
    Args:
        env : An environment that satisfies the OpenAI Gym API.
        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:
            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================
            The ``act`` method behaves the same as ``step`` but only returns ``a``.
            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:
            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================
            The ``v`` module's forward call should accept a batch of observations
            and return:
            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================
        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to VPG.
        seed (int): Seed for random number generators.
        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.
        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.
        gamma (float): Discount factor. (Always between 0 and 1.)
        pi_lr (float): Learning rate for policy optimizer.
        vf_lr (float): Learning rate for value function optimizer.
        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.
        max_ep_len (int): Maximum length of trajectory / episode / rollout.
        logger_kwargs (dict): Keyword args for EpochLogger.
        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.
    """
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    obs_dim = env.observation_space.shape
    act_dim = env.action_space.n  # assumes Discrete space

    ac = actor_critic(env.observation_space, env.action_space)
    ac.to(device)

    # buffer size equals number of steps in an epoch
    buff = VPGBuffer(steps_per_epoch, gamma, obs_dim, act_dim)

    def compute_loss_pi(data):
        obs = torch.as_tensor(data.obs_buf, dtype=torch.float32, device=device)
        act = torch.as_tensor(data.act_buf, dtype=torch.int32, device=device)
        adv = torch.as_tensor(data.advantage_buf,
                              dtype=torch.float32,
                              device=device)
        logpa = ac.pi(obs, act)
        return -1 * (logpa * adv).mean()

    def compute_loss_v(data):
        obs = torch.as_tensor(data.obs_buf, dtype=torch.float32, device=device)
        rew2go = torch.as_tensor(data.rew2go_buf,
                                 dtype=torch.float32,
                                 device=device)
        values = ac.v(obs)
        return F.mse_loss(values, rew2go)

    pi_optimizer = torch.optim.Adam(ac.pi.parameters(), lr=pi_lr)
    v_optimizer = torch.optim.Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update_pi(data):
        pi_optimizer.zero_grad()
        pi_loss = compute_loss_pi(data)
        pi_loss.backward()
        pi_optimizer.step()

        logger.store(LossPi=pi_loss.item())
        #TODO: log policy entropy

    def update_v(data):
        for s in range(train_v_iters):
            v_optimizer.zero_grad()
            v_loss = compute_loss_v(data)
            v_loss.backward()
            v_optimizer.step()

            logger.store(LossV=v_loss.item())

    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    t = 0  # total environment interactions

    # Update policy once per epoch
    for epoch in range(epochs):
        for t_epoch in range(steps_per_epoch):
            t += 1
            a, v, logpa = ac.step(
                torch.as_tensor(o, dtype=torch.float32, device=device))
            o2, r, d, info = env.step(a.cpu().numpy())
            buff.store(o, a, v, r, logpa)

            ep_ret += r
            ep_len += 1

            # Ignore the "done" signal if it comes from hitting the time
            # horizon (that is, when it's an artificial terminal signal
            # that isn't based on the agent's state)
            d = False if ep_len == max_ep_len else d

            o = o2

            # If trajectory is finished, calculate rewards to go,
            # then calculate the Advantage.
            if d is True or (ep_len == max_ep_len) or (t_epoch + 1
                                                       == steps_per_epoch):
                buff.finish_trajectory()
                logger.store(
                    EpRet=ep_ret,
                    EpLen=ep_len,
                )

                o, ep_ret, ep_len = env.reset(), 0, 0

            # Calculate policy gradient when we've collected t_epoch time steps.
            if t_epoch + 1 == steps_per_epoch:
                pylogger.debug('*** epoch ***', epoch)
                pylogger.debug('*** t_epoch ***', t_epoch)
                pylogger.debug('values', buff.val_buf)
                pylogger.debug('rewards', buff.rew_buf)
                pylogger.debug('rew2go', buff.rew2go_buf)
                pylogger.debug('advantage', buff.advantage_buf)

                # Update the policy using policy gradient
                update_pi(buff)

                # Re-fit the value function on the MSE.  Note, this is
                # gradient descent starting from the previous parameters.
                update_v(buff)

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs):
            logger.save_state({'env': env},
                              None)  # note, this includes full model pickle

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('TotalEnvInteracts', t)
        logger.log_tabular('Time', time.time() - start_time)
        if hasattr(env, 'episode_id'):
            logger.log_tabular('EpisodeId', env.episode_id)

        # If a quantity has not been calculated/stored yet, do not log it.  This can
        # happen, e.g. if NN update length or episode length exceeds num steps in epoch.
        to_log = [{
            'key': 'LossV',
            'average_only': True
        }, {
            'key': 'LossPi',
            'average_only': True
        }, {
            'key': 'EpRet',
            'with_min_and_max': True
        }, {
            'key': 'EpLen',
            'average_only': True
        }, {
            'key': 'RawRet',
            'with_min_and_max': True
        }, {
            'key': 'RawLen',
            'average_only': True
        }]

        for log_tabular_kwargs in to_log:
            key = log_tabular_kwargs['key']
            if key in logger.epoch_dict and len(logger.epoch_dict[key]) > 0:
                logger.log_tabular(**log_tabular_kwargs)

        wandb.log(logger.log_current_row, step=epoch)
        logger.dump_tabular()

        # reset buffer
        buff = VPGBuffer(steps_per_epoch, gamma, obs_dim, act_dim)

    # Save final model as a state dict
    state = {
        'epoch': epoch,
        'pi_state_dict': ac.pi.state_dict(),
        'v_state_dict': ac.v.state_dict(),
        'pi_optimizer': pi_optimizer.state_dict(),
        'v_optimizer': v_optimizer.state_dict(),
    }
    # hack for wandb: should output the model in the wandb.run.dir to avoid
    # problems syncing the model in the cloud with wandb's files
    state_fname = os.path.join(logger_kwargs['output_dir'], f"state_dict.pt")
    torch.save(state, state_fname)
    wandb.save(state_fname)
    pylogger.info(f"Saved state dict to {state_fname}")
    env.close()