optimizer = torch.optim.Adam(net.parameters(), eps=0.000001, lr=args.lr, betas=(0.9, 0.999), weight_decay=0.0001) # training loop for epoch in range(1, args.epochs): accuracy = train(net, train_loader, optimizer) if epoch % 100 == 0 and accuracy == 100: break # graph hidden units for layer in [1, 2]: if layer == 1 or args.net != 'polar': for node in range(args.hid): graph_hidden(net, layer, node) plt.scatter(full_input[:, 0], full_input[:, 1], c=1 - full_target[:, 0], cmap='RdYlBu') plt.savefig('%s%d_%d.png' % (args.net, layer, node)) # graph output unit graph_output(net) plt.scatter(full_input[:, 0], full_input[:, 1], c=1 - full_target[:, 0], cmap='RdYlBu') plt.savefig('%s_out.png' % args.net)
optimizer = torch.optim.Adam(net.parameters(), eps=0.000001, lr=args.lr, betas=(0.9, 0.999), weight_decay=0.0001) # optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, weight_decay=0.0001) for epoch in range(1, args.epochs): accuracy = train(net, train_loader, optimizer) if epoch % 100 == 0 and accuracy == 100: break # save model for layer in [1, 2]: if layer == 1 or args.net != 'polar': for node in range(args.hid): graph_hidden(net, layer, node) # output hiden layer values plt.scatter(full_input[:, 0], full_input[:, 1], c=1 - full_target[:, 0], cmap='RdYlBu') plt.savefig('%s%d_%d.png' % (args.net, layer, node)) graph_output(net) plt.scatter(full_input[:, 0], full_input[:, 1], c=1 - full_target[:, 0], cmap='RdYlBu') plt.savefig('%s_out.png' % args.net)