x = np.linspace(-20.1, 20.5, 100), Lr = np.linspace(0.1, 20.0, 50) ), theta_vars = dict(tau = RV('uniform', 0.7, 1.0), l = RV('uniform', 5.0, 10.0), D_f = 26e-3, E_f = 72e3, theta = 0.0, xi = RV('weibull_min', scale = 0.017, shape = 8, n_int = 10), phi = 1.0, Ll = 50.0, # Lr = 1.0 ), n_int = 5) e_arr = make_ogrid(s.evar_lst) n_e_arr = [ e / np.max(np.fabs(e)) for e in e_arr ] max_mu_q = np.max(np.fabs(s.mu_q_arr)) n_mu_q_arr = s.mu_q_arr / max_mu_q n_std_q_arr = np.sqrt(s.var_q_arr) / max_mu_q #=========================================================================== # Prepare plotting #=========================================================================== tdir = tempfile.mkdtemp() n_img = n_mu_q_arr.shape[0] fnames = [os.path.join(tdir, 'x%02d.jpg' % i) for i in range(n_img) ] f = m.figure(1, size = (1000, 500), fgcolor = (0, 0, 0), bgcolor = (1., 1., 1.))
# This software is provided without warranty under the terms of the BSD # license included in the Spirrid top directory "licence.txt" and may be # redistributed only under the conditions described in the aforementioned # license. # # Thanks for using Simvisage open source! # #------------------------------------------------------------------------------- from spirrid import make_ogrid import numpy as np evar_names = ['a', 'b', 'c'] evar_lst = [np.arange(1, 5, 1), np.arange(5, 10, 1), np.arange(10, 15, 1)] e_ogrid = make_ogrid(evar_lst) def f(a, b, c,): return a * b * c def mu_q(*e): eargs = dict(zip(evar_names, e)) res = f(**eargs) return res otypes = [ float for i in range(len(evar_lst))] mu_q_vec = np.vectorize(mu_q, otypes=[float]) print mu_q_vec(*e_ogrid)