コード例 #1
0
 def test_conv_channel(self):
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=1)
     kernel_tensor, input_shape = \
         concat_eeg.conv_eeg_signal_channel(fake_image_list, 256, 1)
     # check the size of the shape is equal to the concat size
     self.assertEqual(kernel_tensor.get_shape().as_list(), input_shape)
コード例 #2
0
 def test_conv_channel(self):
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=1)
     kernel_tensor, input_shape = \
         concat_eeg.conv_eeg_signal_channel(fake_image_list, 256, 1)
     # check the size of the shape is equal to the concat size
     self.assertEqual(kernel_tensor.get_shape().as_list(), input_shape)
コード例 #3
0
 def test_conv_time(self):
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=2)
     kernel_tensor, input_shape = \
         concat_eeg.conv_eeg_signal_time(fake_image_list, np.arange(0, 256))
     # check the size of the shape is equal to the concat size
     self.assertEqual(kernel_tensor.get_shape().as_list(), [10, 256, 256*5, 4])
     self.assertEqual(input_shape, [10, 256, 256*5, 4])
コード例 #4
0
 def test_pool_channel_time(self):
     # first split the eeg signal of (10, 256, 256, 1) to 256 * (10, 1, 256, 1)
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=1)
     # then concat the eeg signal use 256 channel kernel index to (10, 128*2, 256, 1)
     kernel_tensor, input_shape = \
         concat_eeg.pool_eeg_signal_channel(fake_image_list, 128, 1)
     self.assertEqual(kernel_tensor.get_shape().as_list(), [10, 128*2, 256, 4])
     self.assertEqual(input_shape, [10, 128*2, 256, 4])
コード例 #5
0
 def test_conv_time(self):
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=2)
     kernel_tensor, input_shape = \
         concat_eeg.conv_eeg_signal_time(fake_image_list, np.arange(0, 256))
     # check the size of the shape is equal to the concat size
     self.assertEqual(kernel_tensor.get_shape().as_list(),
                      [10, 256, 256 * 5, 4])
     self.assertEqual(input_shape, [10, 256, 256 * 5, 4])
コード例 #6
0
 def test_pool_channel_time(self):
     # first split the eeg signal of (10, 256, 256, 1) to 256 * (10, 1, 256, 1)
     fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                       split_dim=1)
     # then concat the eeg signal use 256 channel kernel index to (10, 128*2, 256, 1)
     kernel_tensor, input_shape = \
         concat_eeg.pool_eeg_signal_channel(fake_image_list, 128, 1)
     self.assertEqual(kernel_tensor.get_shape().as_list(),
                      [10, 128 * 2, 256, 4])
     self.assertEqual(input_shape, [10, 128 * 2, 256, 4])
コード例 #7
0
    def test_conv_channel_time(self):
        # first split the eeg signal of (10, 256, 256, 1) to 256 * (10, 1, 256, 1)
        fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                          split_dim=1)
        # then concat the eeg signal use 256 channel kernel index to (10, 256*5, 256, 1)
        kernel_tensor, input_shape = \
            concat_eeg.conv_eeg_signal_channel(fake_image_list, 256, 1)
        self.assertEqual(kernel_tensor.get_shape().as_list(), [10, 256*5, 256, 4])
        self.assertEqual(input_shape, [10, 256*5, 256, 4])

        # then split the new eeg signal of (10, 1280, 256, 1) to 256 * (10, 1280, 1, 1)
        fake_image_list = split_eeg.split_eeg_signal_axes(kernel_tensor,
                                                          split_dim=2)
        # then concat the eeg signal use 256 channel kernel index to (10, 256*5, 256*5, 1)
        kernel_tensor, input_shape = \
            concat_eeg.conv_eeg_signal_time(fake_image_list, np.arange(0, 256))

        # check the size of the shape is equal to the concat size
        self.assertEqual(kernel_tensor.get_shape().as_list(), [10, 256*5, 256*5, 4])
        self.assertEqual(input_shape, [10, 256*5, 256*5, 4])
コード例 #8
0
    def test_conv_channel_time(self):
        # first split the eeg signal of (10, 256, 256, 1) to 256 * (10, 1, 256, 1)
        fake_image_list = split_eeg.split_eeg_signal_axes(FAKE_EEG_SIGNAL,
                                                          split_dim=1)
        # then concat the eeg signal use 256 channel kernel index to (10, 256*5, 256, 1)
        kernel_tensor, input_shape = \
            concat_eeg.conv_eeg_signal_channel(fake_image_list, 256, 1)
        self.assertEqual(kernel_tensor.get_shape().as_list(),
                         [10, 256 * 5, 256, 4])
        self.assertEqual(input_shape, [10, 256 * 5, 256, 4])

        # then split the new eeg signal of (10, 1280, 256, 1) to 256 * (10, 1280, 1, 1)
        fake_image_list = split_eeg.split_eeg_signal_axes(kernel_tensor,
                                                          split_dim=2)
        # then concat the eeg signal use 256 channel kernel index to (10, 256*5, 256*5, 1)
        kernel_tensor, input_shape = \
            concat_eeg.conv_eeg_signal_time(fake_image_list, np.arange(0, 256))

        # check the size of the shape is equal to the concat size
        self.assertEqual(kernel_tensor.get_shape().as_list(),
                         [10, 256 * 5, 256 * 5, 4])
        self.assertEqual(input_shape, [10, 256 * 5, 256 * 5, 4])