コード例 #1
0
    def schur(self, A, schur_list, full_matrix=True):
        """
        Setup the solver object to work in Schur complement mode

        full_matrix: boolean, default True. If full_matrix is False
        and a symmetric factorization is used, only the lower part of
        the Schur matrix is stored in self.S
        """

        self.A = A
        self.spmA = spm.spmatrix(A)
        if self.verbose:
            self.spmA.printInfo()

        self.schur_list = schur_list + self.spmA.findBase()
        setSchurUnknownList(self.pastix_data, self.schur_list)

        task_analyze(self.pastix_data, self.spmA)
        task_numfact(self.pastix_data, self.spmA)

        nschur = len(schur_list)
        self.S = np.zeros((nschur, nschur), order='F', dtype=A.dtype)
        getSchur(self.pastix_data, self.S)
        if full_matrix and (self.factotype != factotype.LU):
            self.S += la.tril(self.S, -1).T
コード例 #2
0
 def setup(self, A):
     """
     Setup the solver object for the classic case w/o Schur complement
     """
     self.A = A
     self.spmA = spm.spmatrix(A)
     if self.verbose:
         self.spmA.printInfo()
     task_analyze(self.pastix_data, self.spmA)
     task_numfact(self.pastix_data, self.spmA)
コード例 #3
0
                      Univ. Bordeaux. All rights reserved.

 @version 6.0.0
 @author Pierre Ramet
 @author Mathieu Faverge
 @author Louis Poirel
 @date 2017-05-04

"""
import spm
import scipy.sparse as sps
import numpy as np

# Hack to make sure that the mkl is loaded
tmp = np.eye(2).dot(np.ones(2))

# Set the problem
n = 9
A = sps.spdiags([np.ones(n) * i for i in [4, -1, -1, -1, -1]],
                [0, 1, 3, -1, -3], n, n)
x0 = np.arange(n)
b = np.zeros(n)

spmA = spm.spmatrix(A)

# Multiply A by x
spmA.mult(x0, b, trans=spm.trans.NoTrans, alpha=1., beta=0.)

# Check that A * x = b
spmA.checkAxb(None, b, x0)
コード例 #4
0
 @version 6.0.0
 @author Pierre Ramet
 @author Mathieu Faverge
 @author Louis Poirel
 @date 2017-05-04

"""
import spm
import numpy as np

# Hack to make sure that the mkl is loaded
tmp = np.eye(2).dot(np.ones(2))

# Load a sparse matrix from the Laplacian driver
A = spm.spmatrix(None, driver=spm.driver.Laplacian, filename="10:10:10:2.:1.")

# Example from a HB file
#A = spm( None, driver=driver.HB, filename="$PASTIX_DIR/test/matrix/orsirr.rua" )

A.printInfo()

# Scale A for low-rank: A / ||A||_f
norm = A.norm()
A.scale(1. / norm)

# Generate b and x0 vectors such that A * x0 = b
nrhs = 10
x0, b = A.genRHS(spm.rhstype.RndX, nrhs)

# Check that A * x = b
コード例 #5
0
ファイル: step-by-step.py プロジェクト: lsalles23/pastix
# Hack to make sure that the mkl is loaded
tmp = np.eye(2).dot(np.ones(2))

# Initialize parameters to default values
iparm, dparm = pastix.initParam()

# Startup PaStiX
pastix_data = pastix.init(iparm, dparm)

# Change some parameters
iparm[pastix.iparm.factorization] = pastix.factotype.LU

for nspb in range(1, 3):
    # Load a sparse matrix from HB driver
    spmA = spm.spmatrix(None,
                        driver=spm.driver.Laplacian,
                        filename=("%d:%d:%d:4.:1." %
                                  (nspb * 5, nspb * 5, nspb * 5)))
    #spmA = spm.spmatrix( None, driver=driver.HB, filename="$PASTIX_DIR/test/matrix/orsirr.rua" )
    spmA.printInfo()

    # Scale A for low-rank: A / ||A||_f
    norm = spmA.norm()
    spmA.scale(1. / norm)

    # Perform analyze
    pastix.task_analyze(pastix_data, spmA)

    for nfact in range(1, 3):
        # Perform numerical factorization
        pastix.task_numfact(pastix_data, spmA)