コード例 #1
0
ファイル: test_factory.py プロジェクト: arranger1044/spyn
def test_linked_random_spn_top_down():
    # number small parameters
    n_levels = 10
    vars = [2, 3, 2, 2, 4]
    n_max_children = 2
    n_scope_children = 3
    max_scope_split = 2
    merge_prob = 0.5

    # building it
    print('creating random spn')
    rand_gen = random.Random(789)

    #
    # doing this for more than once
    n_times = 10
    for _i in range(n_times):
        spn = SpnFactory.linked_random_spn_top_down(vars,
                                                    n_levels,
                                                    n_max_children,
                                                    n_scope_children,
                                                    max_scope_split,
                                                    merge_prob,
                                                    rand_gen=rand_gen)

        # printing for comparison
        print(spn)
        print(spn.stats())
        assert spn.is_valid()

        # translating to theano representation
        theano_spn = SpnFactory.linked_to_theano(spn)

        print(theano_spn)
        print(theano_spn.stats())

        #
        # looking for the same computations
        # time for some inference comparison
        for instance in II:
            print('linked')
            res_l = spn.eval(instance)
            print(res_l)
            print('theano')
            res_t = theano_spn.eval(instance)
            print(res_t)
            assert_array_almost_equal(res_l, res_t)
コード例 #2
0
ファイル: test_factory.py プロジェクト: danhlephuoc/spae
def test_linked_random_spn_top_down():
    # number small parameters
    n_levels = 10
    vars = [2, 3, 2, 2, 4]
    n_max_children = 2
    n_scope_children = 3
    max_scope_split = 2
    merge_prob = 0.5

    # building it
    print('creating random spn')
    rand_gen = random.Random(789)

    #
    # doing this for more than once
    n_times = 10
    for _i in range(n_times):
        spn = SpnFactory.linked_random_spn_top_down(vars,
                                                    n_levels,
                                                    n_max_children,
                                                    n_scope_children,
                                                    max_scope_split,
                                                    merge_prob,
                                                    rand_gen=rand_gen)

        # printing for comparison
        print(spn)
        print(spn.stats())
        assert spn.is_valid()

        # translating to theano representation
        theano_spn = SpnFactory.linked_to_theano(spn)

        print(theano_spn)
        print(theano_spn.stats())

        #
        # looking for the same computations
        # time for some inference comparison
        for instance in II:
            print('linked')
            res_l = spn.eval(instance)
            print(res_l)
            print('theano')
            res_t = theano_spn.eval(instance)
            print(res_t)
            assert_array_almost_equal(res_l, res_t)
コード例 #3
0
ファイル: test_factory.py プロジェクト: arranger1044/spyn
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root. add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[ind1, ind2,
                                                 ind3, ind4,
                                                 ind5, ind6,
                                                 ind7, ind8,
                                                 ind9, ind10,
                                                 ind11])

    # creating the linked spn
    spn_linked = SpnLinked(input_layer=ind_layer,
                           layers=[aprod_layer,
                                   sum_layer,
                                   prod_layer,
                                   root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #4
0
ファイル: test_factory.py プロジェクト: arranger1044/spyn
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{'var': 0, 'freqs': [1, 2]},
             {'var': 1, 'freqs': [2, 2]},
             {'var': 0, 'freqs': [3, 2]},
             {'var': 1, 'freqs': [0, 3]},
             {'var': 2, 'freqs': [1, 0, 2]},
             {'var': 3, 'freqs': [1, 2, 1, 2]},
             {'var': 3, 'freqs': [3, 4, 0, 1]}]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars,
                                           node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(input_layer=input_layer,
                           layers=[sum_layer2, prod_layer,
                                   sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #5
0
ファイル: test_factory.py プロジェクト: danhlephuoc/spae
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root.add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[
        ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8, ind9, ind10, ind11
    ])

    # creating the linked spn
    spn_linked = SpnLinked(
        input_layer=ind_layer,
        layers=[aprod_layer, sum_layer, prod_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #6
0
ファイル: test_factory.py プロジェクト: danhlephuoc/spae
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{
        'var': 0,
        'freqs': [1, 2]
    }, {
        'var': 1,
        'freqs': [2, 2]
    }, {
        'var': 0,
        'freqs': [3, 2]
    }, {
        'var': 1,
        'freqs': [0, 3]
    }, {
        'var': 2,
        'freqs': [1, 0, 2]
    }, {
        'var': 3,
        'freqs': [1, 2, 1, 2]
    }, {
        'var': 3,
        'freqs': [3, 4, 0, 1]
    }]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars, node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(
        input_layer=input_layer,
        layers=[sum_layer2, prod_layer, sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)