コード例 #1
0
ファイル: test_spn.py プロジェクト: giulianavll/MLC-SPN
def test_spn_construction_by_init_and_evaluation():

    # building the same levels
    input_layer = build_spn_indicator_layer(vars)
    sum_layer, prod_layer = build_spn_layers(input_layer)

    spn = Spn(input_layer=input_layer, layers=[sum_layer, prod_layer])

    res = spn.eval(I)
    print('First evaluation')
    print(res)

    assert_log_array_almost_equal(root_vals, res)
コード例 #2
0
ファイル: test_spn.py プロジェクト: giulianavll/MLC-SPN
def test_spn_construction_by_add_and_evaluation():
    spn = Spn()

    # building the same levels
    input_layer = build_spn_indicator_layer(vars)
    sum_layer, prod_layer = build_spn_layers(input_layer)

    # adding all layers to the spn
    spn.set_input_layer(input_layer)
    spn.add_layer(sum_layer)
    spn.add_layer(prod_layer)

    res = spn.eval(I)
    print('First evaluation')
    print(res)
    assert_log_array_almost_equal(root_vals, res)
コード例 #3
0
ファイル: test_spn.py プロジェクト: giulianavll/MLC-SPN
def test_spn_construction_by_add_and_evaluation_II():
    spn = Spn()

    # print('empty spn')
    # print(spn)

    input_layer = build_spn_smoothed_layer(vars, dicts, alpha)
    prod_layer = build_spn_layers_II(input_layer)

    # adding all layers to the spn
    spn.set_input_layer(input_layer)
    spn.add_layer(prod_layer)

    # print('created spn')
    # print(spn)

    res = spn.eval(I)
    print('First smoothed evaluation')
    print(res)
    assert_log_array_almost_equal(root_vals, res)
コード例 #4
0
ファイル: test_factory.py プロジェクト: arranger1044/spyn
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root. add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[ind1, ind2,
                                                 ind3, ind4,
                                                 ind5, ind6,
                                                 ind7, ind8,
                                                 ind9, ind10,
                                                 ind11])

    # creating the linked spn
    spn_linked = SpnLinked(input_layer=ind_layer,
                           layers=[aprod_layer,
                                   sum_layer,
                                   prod_layer,
                                   root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #5
0
ファイル: test_factory.py プロジェクト: arranger1044/spyn
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{'var': 0, 'freqs': [1, 2]},
             {'var': 1, 'freqs': [2, 2]},
             {'var': 0, 'freqs': [3, 2]},
             {'var': 1, 'freqs': [0, 3]},
             {'var': 2, 'freqs': [1, 0, 2]},
             {'var': 3, 'freqs': [1, 2, 1, 2]},
             {'var': 3, 'freqs': [3, 4, 0, 1]}]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars,
                                           node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(input_layer=input_layer,
                           layers=[sum_layer2, prod_layer,
                                   sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #6
0
ファイル: test_spn.py プロジェクト: willis-hu/spyn-repr
def test_toy_spn_numpy_linked():

    input_vec = numpy.array([[0., 0., 0.], [0., 0., 0.], [0., 1., 1.],
                             [MARG_IND, MARG_IND, MARG_IND]]).T

    ind_node_1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind_node_2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind_node_3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind_node_4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind_node_5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind_node_6 = CategoricalIndicatorNode(var=2, var_val=1)

    input_layer = CategoricalInputLayer(nodes=[
        ind_node_1, ind_node_2, ind_node_3, ind_node_4, ind_node_5, ind_node_6
    ])

    n_nodes_layer_1 = 6
    layer_1_sum_nodes = [SumNode() for i in range(n_nodes_layer_1)]
    layer_1_sum_nodes[0].add_child(ind_node_1, 0.6)
    layer_1_sum_nodes[0].add_child(ind_node_2, 0.4)
    layer_1_sum_nodes[1].add_child(ind_node_1, 0.3)
    layer_1_sum_nodes[1].add_child(ind_node_2, 0.7)
    layer_1_sum_nodes[2].add_child(ind_node_3, 0.1)
    layer_1_sum_nodes[2].add_child(ind_node_4, 0.9)
    layer_1_sum_nodes[3].add_child(ind_node_3, 0.7)
    layer_1_sum_nodes[3].add_child(ind_node_4, 0.3)
    layer_1_sum_nodes[4].add_child(ind_node_5, 0.5)
    layer_1_sum_nodes[4].add_child(ind_node_6, 0.5)
    layer_1_sum_nodes[5].add_child(ind_node_5, 0.2)
    layer_1_sum_nodes[5].add_child(ind_node_6, 0.8)

    layer_1 = SumLayer(layer_1_sum_nodes)

    n_nodes_layer_2 = 4
    layer_2_prod_nodes = [ProductNode() for i in range(n_nodes_layer_2)]
    layer_2_prod_nodes[0].add_child(layer_1_sum_nodes[0])
    layer_2_prod_nodes[0].add_child(layer_1_sum_nodes[2])
    layer_2_prod_nodes[0].add_child(layer_1_sum_nodes[4])
    layer_2_prod_nodes[1].add_child(layer_1_sum_nodes[1])
    layer_2_prod_nodes[1].add_child(layer_1_sum_nodes[3])
    layer_2_prod_nodes[1].add_child(layer_1_sum_nodes[5])
    layer_2_prod_nodes[2].add_child(layer_1_sum_nodes[0])
    layer_2_prod_nodes[2].add_child(layer_1_sum_nodes[2])
    layer_2_prod_nodes[2].add_child(layer_1_sum_nodes[5])
    layer_2_prod_nodes[3].add_child(layer_1_sum_nodes[1])
    layer_2_prod_nodes[3].add_child(layer_1_sum_nodes[3])
    layer_2_prod_nodes[3].add_child(layer_1_sum_nodes[4])

    layer_2 = ProductLayer(layer_2_prod_nodes)

    root = SumNode()
    root.add_child(layer_2_prod_nodes[0], 0.2)
    root.add_child(layer_2_prod_nodes[1], 0.4)
    root.add_child(layer_2_prod_nodes[2], 0.15)
    root.add_child(layer_2_prod_nodes[3], 0.25)

    layer_3 = SumLayer([root])

    spn = Spn(input_layer=input_layer, layers=[layer_1, layer_2, layer_3])

    res = spn.eval(input_vec)
    print('First evaluation')
    print(res)
コード例 #7
0
ファイル: test_factory.py プロジェクト: danhlephuoc/spae
def test_linked_to_theano_indicator():
    # creating single nodes
    root = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()
    prod3 = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()
    sum3 = SumNode()
    sum4 = SumNode()

    ind1 = CategoricalIndicatorNode(var=0, var_val=0)
    ind2 = CategoricalIndicatorNode(var=0, var_val=1)
    ind3 = CategoricalIndicatorNode(var=1, var_val=0)
    ind4 = CategoricalIndicatorNode(var=1, var_val=1)
    ind5 = CategoricalIndicatorNode(var=2, var_val=0)
    ind6 = CategoricalIndicatorNode(var=2, var_val=1)
    ind7 = CategoricalIndicatorNode(var=2, var_val=2)
    ind8 = CategoricalIndicatorNode(var=3, var_val=0)
    ind9 = CategoricalIndicatorNode(var=3, var_val=1)
    ind10 = CategoricalIndicatorNode(var=3, var_val=2)
    ind11 = CategoricalIndicatorNode(var=3, var_val=3)

    prod4 = ProductNode()
    prod5 = ProductNode()
    prod6 = ProductNode()
    prod7 = ProductNode()

    # linking nodes
    root.add_child(prod1, 0.3)
    root.add_child(prod2, 0.3)
    root.add_child(prod3, 0.4)

    prod1.add_child(sum1)
    prod1.add_child(sum2)
    prod2.add_child(ind7)
    prod2.add_child(ind8)
    prod2.add_child(ind11)
    prod3.add_child(sum3)
    prod3.add_child(sum4)

    sum1.add_child(ind1, 0.3)
    sum1.add_child(ind2, 0.3)
    sum1.add_child(prod4, 0.4)

    sum2.add_child(ind2, 0.5)
    sum2.add_child(prod4, 0.2)
    sum2.add_child(prod5, 0.3)

    sum3.add_child(prod6, 0.5)
    sum3.add_child(prod7, 0.5)
    sum4.add_child(prod6, 0.5)
    sum4.add_child(prod7, 0.5)

    prod4.add_child(ind3)
    prod4.add_child(ind4)
    prod5.add_child(ind5)
    prod5.add_child(ind6)
    prod6.add_child(ind9)
    prod6.add_child(ind10)
    prod7.add_child(ind9)
    prod7.add_child(ind10)

    # building layers from nodes
    root_layer = SumLayerLinked([root])
    prod_layer = ProductLayerLinked([prod1, prod2, prod3])
    sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4])
    aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7])
    ind_layer = CategoricalIndicatorLayer(nodes=[
        ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8, ind9, ind10, ind11
    ])

    # creating the linked spn
    spn_linked = SpnLinked(
        input_layer=ind_layer,
        layers=[aprod_layer, sum_layer, prod_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #8
0
ファイル: test_factory.py プロジェクト: danhlephuoc/spae
def test_linked_to_theano_categorical():
    vars = [2, 2, 3, 4]
    freqs = [{
        'var': 0,
        'freqs': [1, 2]
    }, {
        'var': 1,
        'freqs': [2, 2]
    }, {
        'var': 0,
        'freqs': [3, 2]
    }, {
        'var': 1,
        'freqs': [0, 3]
    }, {
        'var': 2,
        'freqs': [1, 0, 2]
    }, {
        'var': 3,
        'freqs': [1, 2, 1, 2]
    }, {
        'var': 3,
        'freqs': [3, 4, 0, 1]
    }]

    # create input layer first
    input_layer = CategoricalSmoothedLayer(vars=vars, node_dicts=freqs)
    # get nodes
    ind_nodes = [node for node in input_layer.nodes()]

    root_node = ProductNode()

    sum1 = SumNode()
    sum2 = SumNode()

    prod1 = ProductNode()
    prod2 = ProductNode()

    sum3 = SumNode()
    sum4 = SumNode()

    # linking
    root_node.add_child(sum1)
    root_node.add_child(sum2)
    root_node.add_child(ind_nodes[0])
    root_node.add_child(ind_nodes[1])

    sum1.add_child(ind_nodes[2], 0.4)
    sum1.add_child(ind_nodes[3], 0.6)
    sum2.add_child(ind_nodes[3], 0.2)
    sum2.add_child(prod1, 0.5)
    sum2.add_child(prod2, 0.3)

    prod1.add_child(ind_nodes[4])
    prod1.add_child(sum3)
    prod1.add_child(sum4)
    prod2.add_child(sum3)
    prod2.add_child(sum4)

    sum3.add_child(ind_nodes[5], 0.5)
    sum3.add_child(ind_nodes[6], 0.5)
    sum4.add_child(ind_nodes[5], 0.4)
    sum4.add_child(ind_nodes[6], 0.6)

    # creating layers
    root_layer = ProductLayerLinked([root_node])
    sum_layer = SumLayerLinked([sum1, sum2])
    prod_layer = ProductLayerLinked([prod1, prod2])
    sum_layer2 = SumLayerLinked([sum3, sum4])

    # create the linked spn
    spn_linked = SpnLinked(
        input_layer=input_layer,
        layers=[sum_layer2, prod_layer, sum_layer, root_layer])

    print(spn_linked)

    # converting to theano repr
    spn_theano = SpnFactory.linked_to_theano(spn_linked)
    print(spn_theano)

    # time for some inference comparison
    for instance in I:
        print('linked')
        res_l = spn_linked.eval(instance)
        print(res_l)
        print('theano')
        res_t = spn_theano.eval(instance)
        print(res_t)
        assert_array_almost_equal(res_l, res_t)
コード例 #9
0
ファイル: test_scopes.py プロジェクト: danhlephuoc/spae
def test_build_linked_spn_from_scope_graph():

    #
    # creating a region graph as an input scope graph
    n_cols = 2
    n_rows = 2
    coarse = 2
    #
    # create initial region
    root_region = Region.create_whole_region(n_rows, n_cols)

    region_graph = create_poon_region_graph(root_region, coarse=coarse)

    # print(region_graph)
    print('# partitions', region_graph.n_partitions())
    print('# regions', region_graph.n_scopes())

    print(region_graph)

    #
    #
    k = 2
    spn = build_linked_spn_from_scope_graph(region_graph, k)

    print(spn)

    print(spn.stats())

    #
    # back to the scope graph
    root_layer = list(spn.root_layer().nodes())
    assert len(root_layer) == 1
    root = root_layer[0]

    scope_graph = get_scope_graph_from_linked_spn(root)
    print(scope_graph)

    assert scope_graph == region_graph

    #
    # building an spn from scratch
    #
    # building leaf nodes
    n_vars = 4
    vars = [0, 1, 2, 3]
    leaves = [
        CategoricalIndicatorNode(var, val) for var in range(n_vars)
        for val in [0, 1]
    ]
    input_layer = CategoricalIndicatorLayer(nodes=leaves, vars=vars)

    #
    # building root
    root_node = SumNode(var_scope=frozenset(vars))
    root_layer = SumLayer([root_node])

    #
    # building product nodes
    prod_list_1 = [ProductNode(var_scope=vars) for i in range(4)]
    prod_list_2 = [ProductNode(var_scope=vars) for i in range(4)]
    prod_nodes_1 = prod_list_1 + prod_list_2
    product_layer_1 = ProductLayer(prod_nodes_1)

    for p in prod_nodes_1:
        root_node.add_child(p, 1.0 / len(prod_nodes_1))

    #
    # build sum nodes
    sum_list_1 = [SumNode() for i in range(2)]
    sum_list_2 = [SumNode() for i in range(2)]
    sum_list_3 = [SumNode() for i in range(2)]
    sum_list_4 = [SumNode() for i in range(2)]

    sum_layer_2 = SumLayer(sum_list_1 + sum_list_2 + sum_list_3 + sum_list_4)

    sum_pairs = []
    for s_1 in sum_list_1:
        for s_2 in sum_list_2:
            sum_pairs.append((s_1, s_2))

    for p, (s_1, s_2) in zip(prod_list_1, sum_pairs):
        p.add_child(s_1)
        p.add_child(s_2)

    sum_pairs = []
    for s_3 in sum_list_3:
        for s_4 in sum_list_4:
            sum_pairs.append((s_3, s_4))

    for p, (s_3, s_4) in zip(prod_list_2, sum_pairs):
        p.add_child(s_3)
        p.add_child(s_4)

    #
    # again product nodes
    prod_list_3 = [ProductNode() for i in range(4)]
    prod_list_4 = [ProductNode() for i in range(4)]
    prod_list_5 = [ProductNode() for i in range(4)]
    prod_list_6 = [ProductNode() for i in range(4)]

    product_layer_3 = ProductLayer(prod_list_3 + prod_list_4 + prod_list_5 +
                                   prod_list_6)

    for s in sum_list_1:
        for p in prod_list_3:
            s.add_child(p, 1.0 / len(prod_list_3))

    for s in sum_list_2:
        for p in prod_list_4:
            s.add_child(p, 1.0 / len(prod_list_4))

    for s in sum_list_3:
        for p in prod_list_5:
            s.add_child(p, 1.0 / len(prod_list_5))

    for s in sum_list_4:
        for p in prod_list_6:
            s.add_child(p, 1.0 / len(prod_list_6))

    #
    # build sum nodes
    sum_list_5 = [SumNode() for i in range(2)]
    sum_list_6 = [SumNode() for i in range(2)]
    sum_list_7 = [SumNode() for i in range(2)]
    sum_list_8 = [SumNode() for i in range(2)]

    sum_layer_4 = SumLayer(sum_list_5 + sum_list_6 + sum_list_7 + sum_list_8)

    sum_pairs = []
    for s_5 in sum_list_5:
        for s_7 in sum_list_7:
            sum_pairs.append((s_5, s_7))

    for p, (s_5, s_7) in zip(prod_list_3, sum_pairs):
        p.add_child(s_5)
        p.add_child(s_7)

    sum_pairs = []
    for s_6 in sum_list_6:
        for s_8 in sum_list_8:
            sum_pairs.append((s_6, s_8))

    for p, (s_6, s_8) in zip(prod_list_4, sum_pairs):
        p.add_child(s_6)
        p.add_child(s_8)

    sum_pairs = []
    for s_5 in sum_list_5:
        for s_6 in sum_list_6:
            sum_pairs.append((s_5, s_6))

    for p, (s_5, s_6) in zip(prod_list_5, sum_pairs):
        p.add_child(s_5)
        p.add_child(s_6)

    sum_pairs = []
    for s_7 in sum_list_7:
        for s_8 in sum_list_8:
            sum_pairs.append((s_7, s_8))

    for p, (s_7, s_8) in zip(prod_list_6, sum_pairs):
        p.add_child(s_7)
        p.add_child(s_8)

    #
    # linking to input layer
    for s in sum_list_5:
        for i in leaves[0:2]:
            s.add_child(i, 0.5)

    for s in sum_list_6:
        for i in leaves[2:4]:
            s.add_child(i, 0.5)

    for s in sum_list_7:
        for i in leaves[4:6]:
            s.add_child(i, 0.5)

    for s in sum_list_8:
        for i in leaves[6:]:
            s.add_child(i, 0.5)

    lspn = LinkedSpn(input_layer=input_layer,
                     layers=[
                         sum_layer_4, product_layer_3, sum_layer_2,
                         product_layer_1, root_layer
                     ])
    print(lspn)
    print(lspn.stats())

    #
    # trying to evaluate them
    input_vec = numpy.array([[1., 1., 1., 0.], [0., 0., 0., 0.],
                             [0., 1., 1., 0.],
                             [MARG_IND, MARG_IND, MARG_IND, MARG_IND]]).T

    res = spn.eval(input_vec)
    print('First evaluation')
    print(res)

    res = lspn.eval(input_vec)
    print('Second evaluation')
    print(res)