コード例 #1
0
def test_implicit_serialization(data):

    train, test = data

    model = ImplicitFactorizationModel(loss='bpr',
                                       n_iter=3,
                                       batch_size=1024,
                                       learning_rate=1e-2,
                                       l2=1e-6,
                                       use_cuda=CUDA)
    model.fit(train)

    mrr_original = mrr_score(model, test, train=train).mean()
    mrr_recovered = mrr_score(_reload(model), test, train=train).mean()

    assert mrr_original == mrr_recovered
コード例 #2
0
def test_bpr_bloom(compression_ratio, expected_mrr):

    interactions = movielens.get_movielens_dataset('100K')

    train, test = random_train_test_split(interactions,
                                          random_state=RANDOM_STATE)

    user_embeddings = BloomEmbedding(interactions.num_users,
                                     32,
                                     compression_ratio=compression_ratio,
                                     num_hash_functions=2)
    item_embeddings = BloomEmbedding(interactions.num_items,
                                     32,
                                     compression_ratio=compression_ratio,
                                     num_hash_functions=2)
    network = BilinearNet(interactions.num_users,
                          interactions.num_items,
                          user_embedding_layer=user_embeddings,
                          item_embedding_layer=item_embeddings)

    model = ImplicitFactorizationModel(loss='bpr',
                                       n_iter=10,
                                       batch_size=1024,
                                       learning_rate=1e-2,
                                       l2=1e-6,
                                       representation=network,
                                       use_cuda=CUDA)

    model.fit(train)
    print(model)

    mrr = mrr_score(model, test, train=train).mean()

    assert mrr + EPSILON > expected_mrr
コード例 #3
0
def evaluate_model(model, train, test, validation):

    start_time = time.time()
    model.fit(train, verbose=True)
    elapsed = time.time() - start_time

    print('Elapsed {}'.format(elapsed))
    print(model)

    if hasattr(test, 'sequences'):
        test_mrr = sequence_mrr_score(model, test)
        val_mrr = sequence_mrr_score(model, validation)
    else:
        test_mrr = mrr_score(model, test)
        val_mrr = mrr_score(model, test.tocsr() + validation.tocsr())

    return test_mrr, val_mrr, elapsed
コード例 #4
0
def test_hinge():

    interactions = movielens.get_movielens_dataset('100K')

    train, test = random_train_test_split(interactions,
                                          random_state=RANDOM_STATE)

    model = ImplicitFactorizationModel(loss='hinge',
                                       n_iter=10,
                                       batch_size=1024,
                                       learning_rate=1e-2,
                                       l2=1e-6,
                                       use_cuda=CUDA)
    model.fit(train)

    mrr = mrr_score(model, test, train=train).mean()

    assert mrr + EPSILON > 0.07
コード例 #5
0
def test_bpr_custom_optimizer():

    interactions = movielens.get_movielens_dataset('100K')

    train, test = random_train_test_split(interactions,
                                          random_state=RANDOM_STATE)

    def adagrad_optimizer(model_params, lr=1e-2, weight_decay=1e-6):

        return torch.optim.Adagrad(model_params,
                                   lr=lr,
                                   weight_decay=weight_decay)

    model = ImplicitFactorizationModel(loss='bpr',
                                       n_iter=10,
                                       batch_size=1024,
                                       optimizer_func=adagrad_optimizer,
                                       use_cuda=CUDA)
    model.fit(train)

    mrr = mrr_score(model, test, train=train).mean()

    assert mrr + EPSILON > 0.05