def test_getAverageBaseflowUnderflowPerSection(self): if self.usepandas: for th in range(-10, 10): th = th + np.random.uniform(-1, 1, 1)[0] sig_val = sig.getAverageBaseflowUnderflowPerSection( self.simulation, self.observation, datetime_series=self.dd_daily, threshold_value=th, mode="get_signature") sig_raw = sig.getAverageBaseflowUnderflowPerSection( self.simulation, self.observation, datetime_series=self.dd_daily, threshold_value=th, mode="get_raw_data") sig_dev = sig.getAverageBaseflowUnderflowPerSection( self.simulation, self.observation, datetime_series=self.dd_daily, threshold_value=th, mode="calc_Dev") self.assertTrue(sig_raw.dtypes[0] == "int64" or sig_raw.dtypes[0] == "float64") self.assertEqual(sig_raw["baseflow"].__len__(), 730) self.assertEqual(str(type(sig_raw.index.tolist()[0])), "<class 'pandas.tslib.Timestamp'>") self.assertEqual(type(float(sig_dev.astype(float))), type(1.0)) self.assertEqual(type(float(sig_val.astype(float))), type(1.0))
dd_daily, threshold_factor=5, section="day")) print( sig.getAverageBaseflowDuration(simulation, observation, dd_daily, threshold_factor=0.2, section="day")) print( sig.getAverageBaseflowFrequencyPerSection(simulation, observation, dd_daily, 3, "day")) print( sig.getAverageBaseflowUnderflowPerSection(simulation, observation, dd_daily, threshold_factor=4, section="day")) print( sig.getBaseflowIndex(simulation, observation, pd.date_range("2015-05-01", periods=timespanlen))) print(sig.getSlopeFDC(simulation, observation)) print( sig.getLowFlowVar(simulation, observation, pd.date_range("2015-05-01", periods=timespanlen))) print( sig.getHighFlowVar(simulation, observation, pd.date_range("2015-05-01", periods=timespanlen)))