def eval_poisson(vec=None): if vec == None: # set default vector for new indices # mesh0 = refine(Mesh(lshape_xml)) mesh0 = UnitSquare(4, 4) fs = FunctionSpace(mesh0, "CG", 1) vec = FEniCSVector(Function(fs)) pde = FEMPoisson() fem_A = pde.assemble_lhs(diffcoeff, vec.basis) fem_b = pde.assemble_rhs(f, vec.basis) solve(fem_A, vec.coeffs, fem_b) return vec
def test_estimator_refinement(): # define source term f = Constant("1.0") # f = Expression("10.*exp(-(pow(x[0] - 0.6, 2) + pow(x[1] - 0.4, 2)) / 0.02)", degree=3) # set default vector for new indices mesh0 = refine(Mesh(lshape_xml)) fs0 = FunctionSpace(mesh0, "CG", 1) B = FEniCSBasis(fs0) u0 = Function(fs0) diffcoeff = Constant("1.0") pde = FEMPoisson() fem_A = pde.assemble_lhs(diffcoeff, B) fem_b = pde.assemble_rhs(f, B) solve(fem_A, u0.vector(), fem_b) vec0 = FEniCSVector(u0) # setup solution multi vector mis = [Multiindex([0]), Multiindex([1]), Multiindex([0, 1]), Multiindex([0, 2])] N = len(mis) # meshes = [UnitSquare(i + 3, 3 + N - i) for i in range(N)] meshes = [refine(Mesh(lshape_xml)) for _ in range(N)] fss = [FunctionSpace(mesh, "CG", 1) for mesh in meshes] # solve Poisson problem w = MultiVectorWithProjection() for i, mi in enumerate(mis): B = FEniCSBasis(fss[i]) u = Function(fss[i]) pde = FEMPoisson() fem_A = pde.assemble_lhs(diffcoeff, B) fem_b = pde.assemble_rhs(f, B) solve(fem_A, u.vector(), fem_b) w[mi] = FEniCSVector(u) # plot(w[mi]._fefunc) # define coefficient field a0 = Expression("1.0", element=FiniteElement('Lagrange', ufl.triangle, 1)) # a = [Expression('2.+sin(2.*pi*I*x[0]+x[1]) + 10.*exp(-pow(I*(x[0] - 0.6)*(x[1] - 0.3), 2) / 0.02)', I=i, degree=3, a = (Expression('A*cos(pi*I*x[0])*cos(pi*I*x[1])', A=1 / i ** 2, I=i, degree=2, element=FiniteElement('Lagrange', ufl.triangle, 1)) for i in count()) rvs = (NormalRV(mu=0.5) for _ in count()) coeff_field = ParametricCoefficientField(a, rvs, a0=a0) # refinement loop # =============== refinements = 3 for refinement in range(refinements): print "*****************************" print "REFINEMENT LOOP iteration ", refinement + 1 print "*****************************" # evaluate residual and projection error estimates # ================================================ maxh = 1 / 10 resind, reserr = ResidualEstimator.evaluateResidualEstimator(w, coeff_field, f) projind, projerr = ResidualEstimator.evaluateProjectionError(w, coeff_field, maxh) # testing --> projglobal, _ = ResidualEstimator.evaluateProjectionError(w, coeff_field, maxh, local=False) for mu, val in projglobal.iteritems(): print "GLOBAL Projection Error for", mu, "=", val # <-- testing # ============== # MARK algorithm # ============== # setup marking sets mesh_markers = defaultdict(set) # residual marking # ================ theta_eta = 0.8 global_res = sum([res[1] for res in reserr.items()]) allresind = list() for mu, resmu in resind.iteritems(): allresind = allresind + [(resmu.coeffs[i], i, mu) for i in range(len(resmu.coeffs))] allresind = sorted(allresind, key=itemgetter(1)) # TODO: check that indexing and cell ids are consistent (it would be safer to always work with cell indices) marked_res = 0 for res in allresind: if marked_res >= theta_eta * global_res: break mesh_markers[res[2]].add(res[1]) marked_res += res[0] print "RES MARKED elements:\n", [(mu, len(cell_ids)) for mu, cell_ids in mesh_markers.iteritems()] # projection marking # ================== theta_zeta = 0.8 min_zeta = 1e-10 max_zeta = max([max(projind[mu].coeffs) for mu in projind.active_indices()]) print "max_zeta =", max_zeta if max_zeta >= min_zeta: for mu, vec in projind.iteritems(): indmu = [i for i, p in enumerate(vec.coeffs) if p >= theta_zeta * max_zeta] mesh_markers[mu] = mesh_markers[mu].union(set(indmu)) print "PROJ MARKING", len(indmu), "elements in", mu print "FINAL MARKED elements:\n", [(mu, len(cell_ids)) for mu, cell_ids in mesh_markers.iteritems()] else: print "NO PROJECTION MARKING due to very small projection error!" # new multiindex activation # ========================= # determine possible new indices theta_delta = 0.9 maxm = 10 a0_f = coeff_field.mean_func Ldelta = {} Delta = w.active_indices() deltaN = int(ceil(0.1 * len(Delta))) # max number new multiindices for mu in Delta: norm_w = norm(w[mu].coeffs, 'L2') for m in count(): mu1 = mu.inc(m) if mu1 not in Delta: if m > maxm or m >= coeff_field.length: # or len(Ldelta) >= deltaN break am_f, am_rv = coeff_field[m] beta = am_rv.orth_polys.get_beta(1) # determine ||a_m/\overline{a}||_{L\infty(D)} (approximately) f = Function(w[mu]._fefunc.function_space()) f.interpolate(a0_f) min_a0 = min(f.vector().array()) f.interpolate(am_f) max_am = max(f.vector().array()) ainfty = max_am / min_a0 assert isinstance(ainfty, float) # print "A***", beta[1], ainfty, norm_w # print "B***", beta[1] * ainfty * norm_w # print "C***", theta_delta, max_zeta # print "D***", theta_delta * max_zeta # print "E***", bool(beta[1] * ainfty * norm_w >= theta_delta * max_zeta) if beta[1] * ainfty * norm_w >= theta_delta * max_zeta: val1 = beta[1] * ainfty * norm_w if mu1 not in Ldelta.keys() or (mu1 in Ldelta.keys() and Ldelta[mu1] < val1): Ldelta[mu1] = val1 print "POSSIBLE NEW MULTIINDICES ", sorted(Ldelta.iteritems(), key=itemgetter(1), reverse=True) Ldelta = sorted(Ldelta.iteritems(), key=itemgetter(1), reverse=True)[:min(len(Ldelta), deltaN)] # add new multiindices to solution vector for mu, _ in Ldelta: w[mu] = vec0 print "SELECTED NEW MULTIINDICES ", Ldelta # create new refined (and enlarged) multi vector # ============================================== for mu, cell_ids in mesh_markers.iteritems(): vec = w[mu].refine(cell_ids, with_prolongation=False) fs = vec._fefunc.function_space() B = FEniCSBasis(fs) u = Function(fs) pde = FEMPoisson() fem_A = pde.assemble_lhs(diffcoeff, B) fem_b = pde.assemble_rhs(f, B) solve(fem_A, vec.coeffs, fem_b) w[mu] = vec
def u0_boundary(x, on_boundary): return on_boundary Dirichlet_boundary = (u0_boundary,) # uD = (Constant(-2.0), ) uD = (Constant(-2.0),) Neumann_boundary = None g = None # define source term f = Constant(1.0) pde = FEMPoisson(dirichlet_boundary=Dirichlet_boundary, uD=uD, neumann_boundary=Neumann_boundary, g=g, f=f) # define multioperator A = MultiOperator(coeff_field, pde.assemble_operator, pde.assemble_operator_inner_dofs) # pcg solver pcg_eps = 1e-6 pcg_maxiter = 100 np.set_printoptions(linewidth=1000, precision=3, suppress=True) # get boundary dofs dofs = [] bcs = pde.create_dirichlet_bcs(w[Multiindex()].basis, None, None) for bc in bcs: