コード例 #1
0
# generate config
from spux.utils import shell
shell.importer('config.py')

# plotting class
from spux.plot.mpl import MatPlotLib
plot = MatPlotLib()

# plot datasets
plot.datasets()

# plot marginal prior distributions
plot.priors()

# plot error model distribution treating each dataset point as prediction
# and a random realization of parameters from prior distribution
from datasets import datasets
from error import h
for name, dataset in datasets.items():
    dataset = dataset()
    xs = dataset['x'].copy(deep=1)
    for index in dataset.index:
        xs.loc[index] = h.inverse(xs.loc[index])
    dataset[r'$\xi$'] = xs
plot.errors(predictions=datasets)

# plot distributions for the initial model values
from initial import initial
plot.distributions(initial, suffix='-initial')

# report status
コード例 #2
0
# generate config
from spux.utils import shell
shell.importer('config.py')

# plotting class
from spux.plot.mpl import MatPlotLib
from exact import exact
plot = MatPlotLib(exact=exact)

# plot dataset
plot.dataset()

# plot marginal prior distributions
plot.priors()

# plot marginal error model distributions
plot.errors()

# plot marginal prior distributions for the initial model values
from inputset import inputset
exact_initial = exact['predictions'].iloc[0]
plot.distributions(inputset['initial'],
                   samples={'exact': exact_initial},
                   suffix='-initial')

# generate report
from spux.report import generate
generate.report(authors=r'Jonas {\v S}ukys')
コード例 #3
0
# load posterior samples
from spux.io import loader
samples, infos = loader.reconstruct()

# burnin
burnin = 150

# plotting class
from spux.plot.mpl import MatPlotLib
plot = MatPlotLib(samples, infos, burnin=burnin)

# plot unsuccessful posteriors
plot.unsuccessfuls()

# plot resets of stuck chains
plot.resets()

# compute and report approximated maximum a posterior (MAP) parameters estimate
plot.MAP()

# plot samples
plot.parameters()

# plot evolution of likelihoods
plot.likelihoods()

# plot evolution of likelihood accuracies
plot.accuracies()

# plot evolution of likelihood particles
plot.particles()
コード例 #4
0
# === LOADING

from spux.io import loader
samples, infos = loader.reconstruct(timingsfiles=None)

# === RESULTS

# plotting class
from spux.plot.mpl import MatPlotLib
from exact import exact
plot = MatPlotLib(samples, infos, exact=exact)

# plot unsuccessful posteriors
plot.unsuccessfuls()

# plot samples
plot.parameters()

# plot evolution of likelihoods
plot.distances()

# plot evolution of acceptances
plot.acceptances()

# plot pairwise joint posterior distributions
plot.posteriors2d(suffix='-progress')

# plot pairwise joint posterior distribution for selected parameter pairs
plot.posterior2d('drift', 'volatility', suffix='-progress')

# === RESULTS
コード例 #5
0
# === load results

from spux.io import loader
samples, infos = loader.reconstruct ()

# === plot

# burnin sample batch
burnin = 75

# plotting class
from spux.plot.mpl import MatPlotLib
from exact import exact
plot = MatPlotLib (samples, infos, burnin = burnin, exact = exact)

# plot unsuccessful posteriors
plot.unsuccessfuls ()

# plot samples
plot.parameters ()

# compute Bayesian model evidence (best with burnin removed)
plot.evidence (burnin)

# plot evolution of likelihoods
plot.likelihoods ()

# plot evolution of likelihood accuracies
plot.accuracies ()

# plot evolution of likelihood particles