def __init__(self, timing_dependence=None, weight_dependence=None, voltage_dependence=None, dendritic_delay_fraction=1.0): AbstractPlasticSynapseDynamics.__init__(self) AbstractPopulationSettable.__init__(self) AbstractChangableAfterRun.__init__(self) self._timing_dependence = timing_dependence self._weight_dependence = weight_dependence self._dendritic_delay_fraction = float(dendritic_delay_fraction) self._change_requires_mapping = True if (self._dendritic_delay_fraction < 0.5 or self._dendritic_delay_fraction > 1.0): raise NotImplementedError( "dendritic_delay_fraction must be in the interval [0.5, 1.0]") if self._timing_dependence is None or self._weight_dependence is None: raise NotImplementedError( "Both timing_dependence and weight_dependence must be" "specified") if voltage_dependence is not None: raise NotImplementedError( "Voltage dependence has not been implemented")
def __init__(self): AbstractPopulationSettable.__init__(self)
def __init__( self, n_neurons, binary, label, max_atoms_per_core, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): ReceiveBuffersToHostBasicImpl.__init__(self) AbstractPartitionableVertex.__init__( self, n_neurons, label, max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__( self, machine_time_step, timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractVRecordable.__init__(self) AbstractGSynRecordable.__init__(self) AbstractProvidesOutgoingEdgeConstraints.__init__(self) AbstractProvidesIncomingEdgeConstraints.__init__(self) AbstractPopulationInitializable.__init__(self) AbstractPopulationSettable.__init__(self) AbstractMappable.__init__(self) self._binary = binary self._label = label self._machine_time_step = machine_time_step self._timescale_factor = timescale_factor self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._spike_recorder = SpikeRecorder(machine_time_step) self._v_recorder = VRecorder(machine_time_step) self._gsyn_recorder = GsynRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._v_buffer_max_size = config.getint( "Buffers", "v_buffer_size") self._gsyn_buffer_max_size = config.getint( "Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests") # Set up synapse handling self._synapse_manager = SynapticManager( synapse_type, machine_time_step, ring_buffer_sigma, spikes_per_second) # Get buffering information for later use self._receive_buffer_host = config.get( "Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint( "Buffers", "receive_buffer_port") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") # bool for if state has changed. self._change_requires_mapping = True
def __init__(self, n_neurons, binary, label, max_atoms_per_core, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, incoming_spike_buffer_size, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): AbstractPartitionableVertex.__init__(self, n_neurons, label, max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__(self, machine_time_step, timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractVRecordable.__init__(self) AbstractGSynRecordable.__init__(self) AbstractProvidesOutgoingPartitionConstraints.__init__(self) AbstractProvidesIncomingPartitionConstraints.__init__(self) AbstractPopulationInitializable.__init__(self) AbstractPopulationSettable.__init__(self) AbstractChangableAfterRun.__init__(self) self._binary = binary self._label = label self._machine_time_step = machine_time_step self._timescale_factor = timescale_factor self._incoming_spike_buffer_size = incoming_spike_buffer_size if incoming_spike_buffer_size is None: self._incoming_spike_buffer_size = config.getint( "Simulation", "incoming_spike_buffer_size") self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._spike_recorder = SpikeRecorder(machine_time_step) self._v_recorder = VRecorder(machine_time_step) self._gsyn_recorder = GsynRecorder(machine_time_step) self._spike_buffer_max_size = config.getint("Buffers", "spike_buffer_size") self._v_buffer_max_size = config.getint("Buffers", "v_buffer_size") self._gsyn_buffer_max_size = config.getint("Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint("Buffers", "time_between_requests") self._minimum_buffer_sdram = config.getint("Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume") self._receive_buffer_host = config.get("Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint("Buffers", "receive_buffer_port") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") # Set up synapse handling self._synapse_manager = SynapticManager(synapse_type, machine_time_step, ring_buffer_sigma, spikes_per_second) # bool for if state has changed. self._change_requires_mapping = True
def __init__(self): AbstractStaticSynapseDynamics.__init__(self) AbstractPopulationSettable.__init__(self) AbstractChangableAfterRun.__init__(self) self._change_requires_mapping = True