コード例 #1
0
    def __init__(
            self, n_neurons,
            spikes_per_second=_apv_defs['spikes_per_second'],
            ring_buffer_sigma=_apv_defs['ring_buffer_sigma'],
            incoming_spike_buffer_size=_apv_defs['incoming_spike_buffer_size'],
            constraints=_apv_defs['constraints'],
            label=_apv_defs['label'],
            a=default_parameters['a'], b=default_parameters['b'],
            c=default_parameters['c'], d=default_parameters['d'],
            i_offset=default_parameters['i_offset'],
            u_init=initialize_parameters['u_init'],
            v_init=initialize_parameters['v_init'],
            tau_syn_E=default_parameters['tau_syn_E'],
            tau_syn_I=default_parameters['tau_syn_I'],
            isyn_exc=default_parameters['isyn_exc'],
            isyn_inh=default_parameters['isyn_inh']):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelIzh(
            n_neurons, a, b, c, d, v_init, u_init, i_offset)
        synapse_type = SynapseTypeExponential(
            n_neurons, tau_syn_E, tau_syn_I, isyn_exc, isyn_inh)
        input_type = InputTypeCurrent()
        threshold_type = ThresholdTypeStatic(n_neurons, _IZK_THRESHOLD)

        super(IzkCurrExpBase, self).__init__(
            n_neurons=n_neurons, binary="IZK_curr_exp.aplx", label=label,
            max_atoms_per_core=IzkCurrExpBase._model_based_max_atoms_per_core,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,
            model_name="IZK_curr_exp", neuron_model=neuron_model,
            input_type=input_type, synapse_type=synapse_type,
            threshold_type=threshold_type, constraints=constraints)
コード例 #2
0
    def __init__(self,
                 tau_m=20.0,
                 cm=1.0,
                 v_rest=-65.0,
                 v_reset=-65.0,
                 v_thresh=-50.0,
                 tau_syn_E=5.0,
                 tau_syn_I=5.0,
                 tau_refrac=0.1,
                 i_offset=0.0,
                 tau_ca2=50.0,
                 i_ca2=0.0,
                 i_alpha=0.1,
                 v=-65.0,
                 isyn_exc=0.0,
                 isyn_inh=0.0):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelLeakyIntegrateAndFire(
            v, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac)
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)
        input_type = InputTypeCurrent()
        threshold_type = ThresholdTypeStatic(v_thresh)
        additional_input_type = AdditionalInputCa2Adaptive(
            tau_ca2, i_ca2, i_alpha)

        super(IFCurrExpCa2Adaptive,
              self).__init__(model_name="IF_curr_exp_ca2_adaptive",
                             binary="IF_curr_exp_ca2_adaptive.aplx",
                             neuron_model=neuron_model,
                             input_type=input_type,
                             synapse_type=synapse_type,
                             threshold_type=threshold_type,
                             additional_input_type=additional_input_type)
コード例 #3
0
    def __init__(self,
                 tau_m=20.0,
                 cm=1.0,
                 v_rest=-65.0,
                 v_reset=-65.0,
                 v_thresh=-50.0,
                 tau_syn_E=5.0,
                 tau_syn_I=5.0,
                 tau_refrac=0.1,
                 i_offset=0.0,
                 e_rev_E=0.0,
                 e_rev_I=-70.0,
                 du_th=0.5,
                 tau_th=20.0,
                 v=-65.0,
                 isyn_exc=0.0,
                 isyn_inh=0.0):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelLeakyIntegrateAndFire(
            v, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac)
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)
        input_type = InputTypeConductance(e_rev_E, e_rev_I)
        threshold_type = ThresholdTypeMaassStochastic(du_th, tau_th, v_thresh)

        super(IFCondExpStoc, self).__init__(model_name="IF_cond_exp_stoc",
                                            binary="IF_cond_exp_stoc.aplx",
                                            neuron_model=neuron_model,
                                            input_type=input_type,
                                            synapse_type=synapse_type,
                                            threshold_type=threshold_type)
コード例 #4
0
    def __init__(self,
                 a=0.02,
                 b=0.2,
                 c=-65.0,
                 d=2.0,
                 i_offset=0.0,
                 u=-14.0,
                 v=-70.0,
                 tau_syn_E=5.0,
                 tau_syn_I=5.0,
                 e_rev_E=0.0,
                 e_rev_I=-70.0,
                 isyn_exc=0.0,
                 isyn_inh=0.0):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelIzh(a, b, c, d, v, u, i_offset)
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)
        input_type = InputTypeConductance(e_rev_E, e_rev_I)
        threshold_type = ThresholdTypeStatic(_IZK_THRESHOLD)

        super().__init__(model_name="IZK_cond_exp",
                         binary="IZK_cond_exp.aplx",
                         neuron_model=neuron_model,
                         input_type=input_type,
                         synapse_type=synapse_type,
                         threshold_type=threshold_type)
コード例 #5
0
    def __init__(self,
                 tau_m=20.0,
                 cm=1.0,
                 v_rest=-65.0,
                 v_reset=-65.0,
                 v_thresh=-50.0,
                 tau_syn_E=5.0,
                 tau_syn_I=5.0,
                 tau_refrac=0.1,
                 i_offset=0.0,
                 v=-65.0,
                 isyn_exc=0.0,
                 isyn_inh=0.0,
                 multiplicator=0.0,
                 inh_input_previous=0.0):

        neuron_model = NeuronModelLeakyIntegrateAndFire(
            v, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac)
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)
        input_type = InputTypeCurrentSEMD(multiplicator, inh_input_previous)
        threshold_type = ThresholdTypeStatic(v_thresh)

        super(IFCurrExpSEMDBase, self).__init__(model_name="IF_curr_exp_SEMD",
                                                binary="IF_curr_exp_sEMD.aplx",
                                                neuron_model=neuron_model,
                                                input_type=input_type,
                                                synapse_type=synapse_type,
                                                threshold_type=threshold_type)
コード例 #6
0
    def __init__(self,
                 n_neurons,
                 spikes_per_second=AbstractPopulationVertex.
                 non_pynn_default_parameters['spikes_per_second'],
                 ring_buffer_sigma=AbstractPopulationVertex.
                 non_pynn_default_parameters['ring_buffer_sigma'],
                 incoming_spike_buffer_size=AbstractPopulationVertex.
                 non_pynn_default_parameters['incoming_spike_buffer_size'],
                 constraints=AbstractPopulationVertex.
                 non_pynn_default_parameters['constraints'],
                 label=AbstractPopulationVertex.
                 non_pynn_default_parameters['label'],
                 tau_m=default_parameters['tau_m'],
                 cm=default_parameters['cm'],
                 v_rest=default_parameters['v_rest'],
                 v_reset=default_parameters['v_reset'],
                 v_thresh=default_parameters['v_thresh'],
                 tau_syn_E=default_parameters['tau_syn_E'],
                 tau_syn_I=default_parameters['tau_syn_I'],
                 tau_refrac=default_parameters['tau_refrac'],
                 i_offset=default_parameters['i_offset'],
                 e_rev_E=default_parameters['e_rev_E'],
                 e_rev_I=default_parameters['e_rev_I'],
                 du_th=default_parameters['du_th'],
                 tau_th=default_parameters['tau_th'],
                 v_init=initialize_parameters['v_init'],
                 isyn_exc=default_parameters['isyn_exc'],
                 isyn_inh=default_parameters['isyn_inh']):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelLeakyIntegrateAndFire(
            n_neurons, v_init, v_rest, tau_m, cm, i_offset, v_reset,
            tau_refrac)
        synapse_type = SynapseTypeExponential(n_neurons,
                                              tau_syn_E,
                                              tau_syn_I,
                                              initial_input_exc=isyn_exc,
                                              initial_input_inh=isyn_inh)
        input_type = InputTypeConductance(n_neurons, e_rev_E, e_rev_I)
        threshold_type = ThresholdTypeMaassStochastic(n_neurons, du_th, tau_th,
                                                      v_thresh)

        super(IFCondExpStoc, self).__init__(
            n_neurons=n_neurons,
            binary="IF_cond_exp_stoc.aplx",
            label=label,
            max_atoms_per_core=IFCondExpStoc._model_based_max_atoms_per_core,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,
            model_name="IF_cond_exp_stoc",
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            constraints=constraints)
    def __init__(
            self,

            # neuron model parameters and state variables
            my_neuron_parameter=-70.0,
            i_offset=0.0,
            v=-70.0,

            # threshold types parameters
            v_thresh=-50.0,

            # synapse type parameters and state variables
            tau_syn_E=5.0,
            tau_syn_I=5.0,
            isyn_exc=0.0,
            isyn_inh=0.0,

            # additional input parameters and state variables
            my_additional_input_parameter=1.0,
            input_current=0.0):

        # create neuron model class
        neuron_model = MyNeuronModel(i_offset, my_neuron_parameter, v)

        # create synapse type model
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)

        # create input type model
        input_type = InputTypeCurrent()

        # create threshold type model
        threshold_type = ThresholdTypeStatic(v_thresh)

        # create additional inputs
        additional_input_type = MyAdditionalInput(
            my_additional_input_parameter, input_current)

        # Create the model using the superclass
        super(MyModelCurrExpMyAdditionalInput, self).__init__(

            # the model a name (shown in reports)
            model_name="MyModelCurrExpMyAdditionalInput",

            # the matching binary name
            binary="my_model_curr_exp_my_additional_input.aplx",

            # the various model types
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            additional_input_type=additional_input_type)
コード例 #8
0
    def __init__(
            self,
            devices,
            create_edges,
            translator=None,

            # default params for the neuron model type
            tau_m=20.0,
            cm=1.0,
            v_rest=0.0,
            v_reset=0.0,
            tau_syn_E=5.0,
            tau_syn_I=5.0,
            tau_refrac=0.1,
            i_offset=0.0,
            v=0.0,
            isyn_inh=0.0,
            isyn_exc=0.0):
        """
        :param devices:\
            The AbstractMulticastControllableDevice instances to be controlled\
            by the population
        :param create_edges:\
            True if edges to the devices should be added by this device (set\
            to False if using the device over Ethernet using a translator)
        :param translator:\
            Translator to be used when used for Ethernet communication.  Must\
            be provided if the device is to be controlled over Ethernet.
        """
        # pylint: disable=too-many-arguments, too-many-locals

        if not devices:
            raise ConfigurationException("No devices specified")

        neuron_model = NeuronModelLeakyIntegrateAndFire(
            v, v_rest, tau_m, cm, i_offset, v_reset, tau_refrac)
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_inh,
                                              isyn_exc)
        input_type = InputTypeCurrent()
        threshold_type = ThresholdTypeMulticastDeviceControl(devices)

        self._devices = devices
        self._translator = translator
        self._create_edges = create_edges

        super(ExternalDeviceLifControl,
              self).__init__(model_name="ExternalDeviceLifControl",
                             binary="external_device_lif_control.aplx",
                             neuron_model=neuron_model,
                             input_type=input_type,
                             synapse_type=synapse_type,
                             threshold_type=threshold_type)
コード例 #9
0
    def __init__(
            self,
            n_neurons,
            spikes_per_second=_apv_defs['spikes_per_second'],
            ring_buffer_sigma=_apv_defs['ring_buffer_sigma'],
            incoming_spike_buffer_size=_apv_defs['incoming_spike_buffer_size'],
            constraints=_apv_defs['constraints'],
            label=_apv_defs['label'],
            tau_m=default_parameters['tau_m'],
            cm=default_parameters['cm'],
            v_rest=default_parameters['v_rest'],
            v_reset=default_parameters['v_reset'],
            v_thresh=default_parameters['v_thresh'],
            tau_syn_E=default_parameters['tau_syn_E'],
            tau_syn_I=default_parameters['tau_syn_I'],
            tau_refrac=default_parameters['tau_refrac'],
            i_offset=default_parameters['i_offset'],
            tau_ca2=default_parameters["tau_ca2"],
            i_ca2=default_parameters["i_ca2"],
            i_alpha=default_parameters["i_alpha"],
            v_init=initialize_parameters['v_init'],
            isyn_exc=default_parameters['isyn_exc'],
            isyn_inh=default_parameters['isyn_inh']):
        # pylint: disable=too-many-arguments, too-many-locals
        neuron_model = NeuronModelLeakyIntegrateAndFire(
            n_neurons, v_init, v_rest, tau_m, cm, i_offset, v_reset,
            tau_refrac)
        synapse_type = SynapseTypeExponential(n_neurons,
                                              tau_syn_E,
                                              tau_syn_I,
                                              initial_input_exc=isyn_exc,
                                              initial_input_inh=isyn_inh)
        input_type = InputTypeCurrent()
        threshold_type = ThresholdTypeStatic(n_neurons, v_thresh)
        additional_input = AdditionalInputCa2Adaptive(n_neurons, tau_ca2,
                                                      i_ca2, i_alpha)

        super(IFCurrExpCa2Adaptive, self).__init__(
            n_neurons=n_neurons,
            binary="IF_curr_exp_ca2_adaptive.aplx",
            label=label,
            max_atoms_per_core=self._model_based_max_atoms_per_core,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,
            model_name="IF_curr_exp_ca2_adaptive",
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            additional_input=additional_input,
            constraints=constraints)
    def __init__(
            self,

            # neuron model parameters and state variables
            my_neuron_parameter=-70.0,
            i_offset=0.0,
            v=-70.0,

            # threshold types parameters
            my_threshold_parameter=0.5,
            threshold_value=-10.0,

            # synapse type parameters
            tau_syn_E=5.0,
            tau_syn_I=5.0,
            isyn_exc=0.0,
            isyn_inh=0.0):

        # create neuron model class
        neuron_model = MyNeuronModel(i_offset, my_neuron_parameter, v)

        # create synapse type model
        synapse_type = SynapseTypeExponential(tau_syn_E, tau_syn_I, isyn_exc,
                                              isyn_inh)

        # create input type model
        input_type = InputTypeCurrent()

        # create threshold type model
        threshold_type = MyThresholdType(threshold_value,
                                         my_threshold_parameter)

        # Create the model using the superclass
        super(MyModelCurrExpMyThreshold, self).__init__(

            # the model a name (shown in reports)
            model_name="MyModelCurrExpMyThreshold",

            # the matching binary name
            binary="my_model_curr_exp_my_threshold.aplx",

            # the various model types
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type)
コード例 #11
0
    def __init__(
            self, n_neurons, spikes_per_second=None, ring_buffer_sigma=None,
            incoming_spike_buffer_size=None, constraints=None, label=None,

            # neuron model parameters
            my_parameter=default_parameters['my_parameter'],
            i_offset=default_parameters['i_offset'],
            v_rest=default_parameters['v_rest'],
            decay=default_parameters['decay'],

            # threshold types parameters
            v_thresh=default_parameters['v_thresh'],

            # synapse type parameters
            tau_syn_E=default_parameters['tau_syn_E'],
            tau_syn_I=default_parameters['tau_syn_I'],
            isyn_exc=default_parameters['isyn_exc'],
            isyn_inh=default_parameters['isyn_inh'],

            # additional input parameter
            my_additional_input_parameter=(
                default_parameters['my_additional_input_parameter']),

            # state variables
            v_init=None):

        # create neuron model class
        neuron_model = MyNeuronModel(
            n_neurons, i_offset, my_parameter, v_rest, decay)

        # create synapse type model
        synapse_type = SynapseTypeExponential(
            n_neurons, tau_syn_E, tau_syn_I, isyn_exc, isyn_inh)

        # create input type model
        input_type = InputTypeCurrent()

        # create threshold type model
        threshold_type = ThresholdTypeStatic(
            n_neurons, v_thresh)

        # create additional inputs
        additional_input = MyAdditionalInput(
            n_neurons, my_additional_input_parameter)

        # instantiate the sPyNNaker system by initialising
        #  the AbstractPopulationVertex
        AbstractPopulationVertex.__init__(

            # standard inputs, do not need to change.
            self, n_neurons=n_neurons, label=label,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,

            max_atoms_per_core=(
                MyModelCurrExpMyAdditionalInputBase.
                _model_based_max_atoms_per_core),

            # the various model types
            neuron_model=neuron_model, input_type=input_type,
            synapse_type=synapse_type, threshold_type=threshold_type,
            additional_input=additional_input,

            # the model a name (shown in reports)
            model_name="MyModelCurrExpMyAdditionalInput",

            # the matching binary name
            binary="my_model_curr_exp_my_additional_input.aplx")
コード例 #12
0
    def __init__(
        self,
        n_neurons,
        spikes_per_second=AbstractPopulationVertex.
        non_pynn_default_parameters['spikes_per_second'],
        ring_buffer_sigma=AbstractPopulationVertex.
        non_pynn_default_parameters['ring_buffer_sigma'],
        incoming_spike_buffer_size=AbstractPopulationVertex.
        non_pynn_default_parameters['incoming_spike_buffer_size'],
        constraints=AbstractPopulationVertex.
        non_pynn_default_parameters['constraints'],
        label=AbstractPopulationVertex.non_pynn_default_parameters['label'],

        # TODO: neuron model parameters (add / remove as required)
        # neuron model parameters
        my_parameter=default_parameters['my_parameter'],
        i_offset=default_parameters['i_offset'],

        # TODO: threshold types parameters (add / remove as required)
        # threshold types parameters
        v_thresh=default_parameters['v_thresh'],

        # TODO: synapse type parameters (add /remove as required)
        # synapse type parameters
        tau_syn_E=default_parameters['tau_syn_E'],
        tau_syn_I=default_parameters['tau_syn_I'],
        isyn_exc=default_parameters['isyn_exc'],
        isyn_inh=default_parameters['isyn_inh'],

        # Add input type parameters for conductance
        e_rev_E=default_parameters['e_rev_E'],
        e_rev_I=default_parameters['e_rev_I'],

        # TODO: Optionally, you can add initial values for the state
        # variables; this is not technically done in PyNN
        v_init=initialize_parameters['v_init']):

        # TODO: create your neuron model class (change if required)
        # create your neuron model class
        neuron_model = MyNeuronModel(n_neurons, i_offset, my_parameter)

        # TODO: create your synapse type model class (change if required)
        # create your synapse type model
        synapse_type = SynapseTypeExponential(n_neurons, tau_syn_E, tau_syn_I,
                                              isyn_exc, isyn_inh)

        # TODO: create your input type model class (change if required)
        # create your input type model
        input_type = InputTypeConductance(n_neurons, e_rev_E, e_rev_I)

        # TODO: create your threshold type model class (change if required)
        # create your threshold type model
        threshold_type = ThresholdTypeStatic(n_neurons, v_thresh)

        # TODO: create your own additional inputs (change if required).
        # create your own additional inputs
        additional_input = None

        # instantiate the sPyNNaker system by initialising
        #  the AbstractPopulationVertex
        AbstractPopulationVertex.__init__(

            # standard inputs, do not need to change.
            self,
            n_neurons=n_neurons,
            label=label,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,

            # TODO: Ensure the correct class is used below
            max_atoms_per_core=(
                MyModelCondExpBase._model_based_max_atoms_per_core),

            # These are the various model types
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            additional_input=additional_input,

            # TODO: Give the model a name (shown in reports)
            model_name="MyModelCondExpBase",

            # TODO: Set this to the matching binary name
            binary="my_model_cond_exp.aplx")
コード例 #13
0
    def __init__(
            self,
            n_neurons,
            spikes_per_second=AbstractPopulationVertex.
        non_pynn_default_parameters['spikes_per_second'],
            ring_buffer_sigma=AbstractPopulationVertex.
        non_pynn_default_parameters['ring_buffer_sigma'],
            incoming_spike_buffer_size=AbstractPopulationVertex.
        non_pynn_default_parameters['incoming_spike_buffer_size'],
            constraints=AbstractPopulationVertex.
        non_pynn_default_parameters['constraints'],
            label=AbstractPopulationVertex.
        non_pynn_default_parameters['label'],

            # neuron model parameters
            my_parameter=default_parameters['my_parameter'],
            i_offset=default_parameters['i_offset'],

            # threshold types parameters
            threshold_value=default_parameters['threshold_value'],
            prob_fire=default_parameters['prob_fire'],
            seed=default_parameters['seed'],

            # synapse type parameters
            tau_syn_E=default_parameters['tau_syn_E'],
            tau_syn_I=default_parameters['tau_syn_I'],
            isyn_exc=default_parameters['isyn_exc'],
            isyn_inh=default_parameters['isyn_inh'],

            # state variables
            v_init=None):

        # create neuron model class
        neuron_model = MyNeuronModel(n_neurons, i_offset, my_parameter)

        # create synapse type model
        synapse_type = SynapseTypeExponential(n_neurons, tau_syn_E, tau_syn_I,
                                              isyn_exc, isyn_inh)

        # create input type model
        input_type = InputTypeCurrent()

        # create threshold type model
        threshold_type = MyThresholdType(n_neurons, threshold_value, prob_fire,
                                         seed)

        # create additional inputs
        additional_input = None

        # instantiate the sPyNNaker system by initialising
        #  the AbstractPopulationVertex
        AbstractPopulationVertex.__init__(

            # standard inputs, do not need to change.
            self,
            n_neurons=n_neurons,
            label=label,
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,
            max_atoms_per_core=(
                MyModelCurrExpMyThresholdBase._model_based_max_atoms_per_core),

            # the various model types
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            additional_input=additional_input,

            # the model a name (shown in reports)
            model_name="MyModelCurrExpMyThreshold",

            # the matching binary name
            binary="my_model_curr_exp_my_threshold.aplx")
コード例 #14
0
    def __init__(
            self,
            n_neurons,
            devices,
            create_edges,
            translator=None,

            # standard neuron stuff
            spikes_per_second=_apv_defs['spikes_per_second'],
            label=_apv_defs['label'],
            ring_buffer_sigma=_apv_defs['ring_buffer_sigma'],
            incoming_spike_buffer_size=_apv_defs['incoming_spike_buffer_size'],
            constraints=_apv_defs['constraints'],

            # default params for the neuron model type
            tau_m=default_parameters['tau_m'],
            cm=default_parameters['cm'],
            v_rest=default_parameters['v_rest'],
            v_reset=default_parameters['v_reset'],
            tau_syn_E=default_parameters['tau_syn_E'],
            tau_syn_I=default_parameters['tau_syn_I'],
            tau_refrac=default_parameters['tau_refrac'],
            i_offset=default_parameters['i_offset'],
            v_init=initialize_parameters['v_init'],
            isyn_inh=default_parameters['isyn_inh'],
            isyn_exc=default_parameters['isyn_exc']):
        """
        :param n_neurons: The number of neurons in the population
        :param devices:\
            The AbstractMulticastControllableDevice instances to be controlled\
            by the population
        :param create_edges:\
            True if edges to the devices should be added by this dev (set\
            to False if using the dev over Ethernet using a translator)
        :param translator:\
            Translator to be used when used for Ethernet communication.  Must\
            be provided if the dev is to be controlled over Ethernet.
        """
        # pylint: disable=too-many-arguments, too-many-locals

        if not devices:
            raise ConfigurationException("No devices specified")

        # Verify that there are the correct number of neurons
        if n_neurons != len(devices):
            raise ConfigurationException(
                "The number of neurons must match the number of devices")

        # Create a partition to key map
        self._partition_id_to_key = OrderedDict(
            (str(dev.device_control_partition_id), dev.device_control_key)
            for dev in devices)

        # Create a partition to atom map
        self._partition_id_to_atom = {
            partition: i
            for (i, partition) in enumerate(self._partition_id_to_key.keys())
        }

        neuron_model = NeuronModelLeakyIntegrateAndFire(
            n_neurons, v_init, v_rest, tau_m, cm, i_offset, v_reset,
            tau_refrac)
        synapse_type = SynapseTypeExponential(n_neurons,
                                              tau_syn_E,
                                              tau_syn_I,
                                              initial_input_inh=isyn_inh,
                                              initial_input_exc=isyn_exc)
        input_type = InputTypeCurrent()
        threshold_type = ThresholdTypeMulticastDeviceControl(devices)

        self._devices = devices
        self._message_translator = translator

        # Add the edges to the devices if required
        self._dependent_vertices = list()
        if create_edges:
            self._dependent_vertices = devices

        super(ExternalDeviceLifControl, self).__init__(
            n_neurons=n_neurons,
            binary="external_device_lif_control.aplx",
            label=label,
            max_atoms_per_core=(
                ExternalDeviceLifControl._model_based_max_atoms_per_core),
            spikes_per_second=spikes_per_second,
            ring_buffer_sigma=ring_buffer_sigma,
            incoming_spike_buffer_size=incoming_spike_buffer_size,
            model_name="ExternalDeviceLifControl",
            neuron_model=neuron_model,
            input_type=input_type,
            synapse_type=synapse_type,
            threshold_type=threshold_type,
            constraints=constraints)