def __init__( self, n_neurons, machine_time_step, timescale_factor, constraints=None, label="SpikeSourcePoisson", rate=1.0, start=0.0, duration=None, seed=None): AbstractPartitionableVertex.__init__( self, n_atoms=n_neurons, label=label, constraints=constraints, max_atoms_per_core=self._model_based_max_atoms_per_core) AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractSpikeRecordable.__init__(self) ReceiveBuffersToHostBasicImpl.__init__(self) AbstractProvidesOutgoingEdgeConstraints.__init__(self) PopulationSettableChangeRequiresMapping.__init__(self) # Store the parameters self._rate = rate self._start = start self._duration = duration self._rng = numpy.random.RandomState(seed) # Prepare for recording, and to get spikes self._spike_recorder = SpikeRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests")
def __init__(self, n_neurons, spike_times, machine_time_step, spikes_per_second, ring_buffer_sigma, timescale_factor, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=None, space_before_notification=640, constraints=None, label="SpikeSourceArray"): if ip_address is None: ip_address = config.get("Buffers", "receive_buffer_host") if port is None: port = config.getint("Buffers", "receive_buffer_port") AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractPartitionableVertex.__init__( self, n_atoms=n_neurons, label=label, max_atoms_per_core=self._model_based_max_atoms_per_core, constraints=constraints) AbstractOutgoingEdgeSameContiguousKeysRestrictor.__init__(self) self._spike_times = spike_times self._max_on_chip_memory_usage_for_spikes = \ max_on_chip_memory_usage_for_spikes_in_bytes self._space_before_notification = space_before_notification self.add_constraint( TagAllocatorRequireIptagConstraint(ip_address, port, strip_sdp=True, board_address=board_address, tag_id=tag)) if self._max_on_chip_memory_usage_for_spikes is None: self._max_on_chip_memory_usage_for_spikes = \ front_end_common_constants.MAX_SIZE_OF_BUFFERED_REGION_ON_CHIP # check the values do not conflict with chip memory limit if self._max_on_chip_memory_usage_for_spikes < 0: raise ConfigurationException( "The memory usage on chip is either beyond what is supportable" " on the spinnaker board being supported or you have requested" " a negative value for a memory usage. Please correct and" " try again") # Keep track of any previously generated buffers self._send_buffers = dict()
def _create_virtual_chip(self, virtual_vertex): sdram_object = SDRAM() # creates the two links spinnaker_link_id = virtual_vertex.get_spinnaker_link_id spinnaker_link_data = \ self._machine.locate_connected_chips_coords_and_link( config.getint("Machine", "version"), spinnaker_link_id) virtual_link_id = (spinnaker_link_data.connected_link + 3) % 6 to_virtual_chip_link = Link( destination_x=virtual_vertex.virtual_chip_x, destination_y=virtual_vertex.virtual_chip_y, source_x=spinnaker_link_data.connected_chip_x, source_y=spinnaker_link_data.connected_chip_y, multicast_default_from=virtual_link_id, multicast_default_to=virtual_link_id, source_link_id=spinnaker_link_data.connected_link) from_virtual_chip_link = Link( destination_x=spinnaker_link_data.connected_chip_x, destination_y=spinnaker_link_data.connected_chip_y, source_x=virtual_vertex.virtual_chip_x, source_y=virtual_vertex.virtual_chip_y, multicast_default_from=(spinnaker_link_data.connected_link), multicast_default_to=spinnaker_link_data.connected_link, source_link_id=virtual_link_id) # create the router links = [from_virtual_chip_link] router_object = MachineRouter( links=links, emergency_routing_enabled=False, clock_speed=MachineRouter.ROUTER_DEFAULT_CLOCK_SPEED, n_available_multicast_entries=sys.maxint) # create the processors processors = list() for virtual_core_id in range(0, 128): processors.append( Processor(virtual_core_id, Processor.CPU_AVAILABLE, virtual_core_id == 0)) # connect the real chip with the virtual one connected_chip = self._machine.get_chip_at( spinnaker_link_data.connected_chip_x, spinnaker_link_data.connected_chip_y) connected_chip.router.add_link(to_virtual_chip_link) # return new v chip return Chip(processors=processors, router=router_object, sdram=sdram_object, x=virtual_vertex.virtual_chip_x, y=virtual_vertex.virtual_chip_y, virtual=True, nearest_ethernet_x=None, nearest_ethernet_y=None)
def _create_virtual_chip(self, virtual_vertex): """ Create a virtual chip as a real chip in the spinnmachine machine\ object :param virtual_vertex: virutal vertex to convert into a real chip :return: the real chip """ sdram_object = SDRAM() # creates the two links spinnaker_link_id = virtual_vertex.get_spinnaker_link_id spinnaker_link_data = \ self._machine.locate_connected_chips_coords_and_link( config.getint("Machine", "version"), spinnaker_link_id) virtual_link_id = (spinnaker_link_data.connected_link + 3) % 6 to_virtual_chip_link = Link( destination_x=virtual_vertex.virtual_chip_x, destination_y=virtual_vertex.virtual_chip_y, source_x=spinnaker_link_data.connected_chip_x, source_y=spinnaker_link_data.connected_chip_y, multicast_default_from=virtual_link_id, multicast_default_to=virtual_link_id, source_link_id=spinnaker_link_data.connected_link) from_virtual_chip_link = Link( destination_x=spinnaker_link_data.connected_chip_x, destination_y=spinnaker_link_data.connected_chip_y, source_x=virtual_vertex.virtual_chip_x, source_y=virtual_vertex.virtual_chip_y, multicast_default_from=(spinnaker_link_data.connected_link), multicast_default_to=spinnaker_link_data.connected_link, source_link_id=virtual_link_id) # create the router links = [from_virtual_chip_link] router_object = MachineRouter( links=links, emergency_routing_enabled=False, clock_speed=MachineRouter.ROUTER_DEFAULT_CLOCK_SPEED, n_available_multicast_entries=sys.maxint) # create the processors processors = list() for virtual_core_id in range(0, 128): processors.append(Processor(virtual_core_id, Processor.CPU_AVAILABLE, virtual_core_id == 0)) # connect the real chip with the virtual one connected_chip = self._machine.get_chip_at( spinnaker_link_data.connected_chip_x, spinnaker_link_data.connected_chip_y) connected_chip.router.add_link(to_virtual_chip_link) # return new v chip return Chip( processors=processors, router=router_object, sdram=sdram_object, x=virtual_vertex.virtual_chip_x, y=virtual_vertex.virtual_chip_y, virtual=True, nearest_ethernet_x=None, nearest_ethernet_y=None)
def __init__( self, n_neurons, spike_times, machine_time_step, timescale_factor, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=None, space_before_notification=640, constraints=None, label="SpikeSourceArray"): if ip_address is None: ip_address = config.get("Buffers", "receive_buffer_host") if port is None: port = config.getint("Buffers", "receive_buffer_port") AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractPartitionableVertex.__init__( self, n_atoms=n_neurons, label=label, max_atoms_per_core=self._model_based_max_atoms_per_core, constraints=constraints) AbstractSpikeRecordable.__init__(self) self._spike_times = spike_times self._max_on_chip_memory_usage_for_spikes = \ max_on_chip_memory_usage_for_spikes_in_bytes self._space_before_notification = space_before_notification self.add_constraint(TagAllocatorRequireIptagConstraint( ip_address, port, strip_sdp=True, board_address=board_address, tag_id=tag)) if self._max_on_chip_memory_usage_for_spikes is None: self._max_on_chip_memory_usage_for_spikes = \ front_end_common_constants.MAX_SIZE_OF_BUFFERED_REGION_ON_CHIP # check the values do not conflict with chip memory limit if self._max_on_chip_memory_usage_for_spikes < 0: raise ConfigurationException( "The memory usage on chip is either beyond what is supportable" " on the spinnaker board being supported or you have requested" " a negative value for a memory usage. Please correct and" " try again") if (self._max_on_chip_memory_usage_for_spikes < self._space_before_notification): self._space_before_notification =\ self._max_on_chip_memory_usage_for_spikes # Keep track of any previously generated buffers self._send_buffers = dict() self._spike_recording_region_size = None # handle recording self._spike_recorder = EIEIOSpikeRecorder(machine_time_step) #handle outgoing constraints self._outgoing_edge_key_restrictor = \ OutgoingEdgeSameContiguousKeysRestrictor()
def __init__( self, n_neurons, machine_time_step, timescale_factor, constraints=None, label="SpikeSourcePoisson", rate=1.0, start=0.0, duration=None, seed=None): AbstractPartitionableVertex.__init__( self, n_neurons, label, self._model_based_max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractProvidesOutgoingPartitionConstraints.__init__(self) PopulationSettableChangeRequiresMapping.__init__(self) # Store the parameters self._rate = utility_calls.convert_param_to_numpy(rate, n_neurons) self._start = utility_calls.convert_param_to_numpy(start, n_neurons) self._duration = utility_calls.convert_param_to_numpy( duration, n_neurons) self._rng = numpy.random.RandomState(seed) # Prepare for recording, and to get spikes self._spike_recorder = MultiSpikeRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") self._receive_buffer_host = config.get( "Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint( "Buffers", "receive_buffer_port") self._minimum_buffer_sdram = config.getint( "Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume")
def __init__( self, n_neurons, machine_time_step, timescale_factor, constraints=None, label="SpikeSourcePoisson", rate=1.0, start=0.0, duration=None, seed=None): AbstractPartitionableVertex.__init__( self, n_neurons, label, self._model_based_max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractProvidesOutgoingPartitionConstraints.__init__(self) PopulationSettableChangeRequiresMapping.__init__(self) # Store the parameters self._rate = rate self._start = start self._duration = duration self._rng = numpy.random.RandomState(seed) # Prepare for recording, and to get spikes self._spike_recorder = SpikeRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") self._receive_buffer_host = config.get( "Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint( "Buffers", "receive_buffer_port") self._minimum_buffer_sdram = config.getint( "Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume")
def __init__( self, n_neurons, spike_times, machine_time_step, spikes_per_second, ring_buffer_sigma, timescale_factor, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=None, constraints=None, label="SpikeSourceArray"): if ip_address is None: ip_address = config.get("Buffers", "receive_buffer_host") if port is None: port = config.getint("Buffers", "receive_buffer_port") AbstractDataSpecableVertex.__init__( self, machine_time_step=machine_time_step, timescale_factor=timescale_factor) AbstractPartitionableVertex.__init__( self, n_atoms=n_neurons, label=label, max_atoms_per_core=self._model_based_max_atoms_per_core, constraints=constraints) AbstractOutgoingEdgeSameContiguousKeysRestrictor.__init__(self) self._spike_times = spike_times self._max_on_chip_memory_usage_for_spikes = \ max_on_chip_memory_usage_for_spikes_in_bytes self._threshold_for_reporting_bytes_written = 0 self.add_constraint(TagAllocatorRequireIptagConstraint( ip_address, port, strip_sdp=True, board_address=board_address, tag_id=tag)) if self._max_on_chip_memory_usage_for_spikes is None: self._max_on_chip_memory_usage_for_spikes = 8 * 1024 * 1024 # check the values do not conflict with chip memory limit if self._max_on_chip_memory_usage_for_spikes < 0: raise ConfigurationException( "The memory usage on chip is either beyond what is supportable" " on the spinnaker board being supported or you have requested" " a negative value for a memory usage. Please correct and" " try again") # Keep track of any previously generated buffers self._send_buffers = dict()
def __init__( self, n_neurons, spike_times, machine_time_step, timescale_factor, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=( constants.SPIKE_BUFFER_SIZE_BUFFERING_IN), space_before_notification=640, constraints=None, label="SpikeSourceArray", spike_recorder_buffer_size=( constants.EIEIO_SPIKE_BUFFER_SIZE_BUFFERING_OUT), buffer_size_before_receive=( constants.EIEIO_BUFFER_SIZE_BEFORE_RECEIVE)): self._ip_address = ip_address if ip_address is None: self._ip_address = config.get("Buffers", "receive_buffer_host") self._port = port if port is None: self._port = config.getint("Buffers", "receive_buffer_port") ReverseIpTagMultiCastSource.__init__( self, n_keys=n_neurons, machine_time_step=machine_time_step, timescale_factor=timescale_factor, label=label, constraints=constraints, max_atoms_per_core=(SpikeSourceArray. _model_based_max_atoms_per_core), board_address=board_address, receive_port=None, receive_sdp_port=None, receive_tag=None, virtual_key=None, prefix=None, prefix_type=None, check_keys=False, send_buffer_times=spike_times, send_buffer_max_space=max_on_chip_memory_usage_for_spikes_in_bytes, send_buffer_space_before_notify=space_before_notification, send_buffer_notification_ip_address=self._ip_address, send_buffer_notification_port=self._port, send_buffer_notification_tag=tag) AbstractSpikeRecordable.__init__(self) # handle recording self._spike_recorder = EIEIOSpikeRecorder(machine_time_step) self._spike_recorder_buffer_size = spike_recorder_buffer_size self._buffer_size_before_receive = buffer_size_before_receive
def __init__(self, host_name=None, timestep=None, min_delay=None, max_delay=None, graph_label=None, database_socket_addresses=None): FrontEndCommonConfigurationFunctions.__init__(self, host_name, graph_label) SpynnakerConfigurationFunctions.__init__(self) FrontEndCommonProvenanceFunctions.__init__(self) self._database_socket_addresses = set() self._database_interface = None self._create_database = None self._populations = list() if self._app_id is None: self._set_up_main_objects( app_id=config.getint("Machine", "appID"), execute_data_spec_report=config.getboolean( "Reports", "writeTextSpecs"), execute_partitioner_report=config.getboolean( "Reports", "writePartitionerReports"), execute_placer_report=config.getboolean( "Reports", "writePlacerReports"), execute_router_dat_based_report=config.getboolean( "Reports", "writeRouterDatReport"), reports_are_enabled=config.getboolean( "Reports", "reportsEnabled"), generate_performance_measurements=config.getboolean( "Reports", "outputTimesForSections"), execute_router_report=config.getboolean( "Reports", "writeRouterReports"), execute_write_reload_steps=config.getboolean( "Reports", "writeReloadSteps"), generate_transciever_report=config.getboolean( "Reports", "writeTransceiverReport"), execute_routing_info_report=config.getboolean( "Reports", "writeRouterInfoReport"), in_debug_mode=config.get("Mode", "mode") == "Debug", generate_tag_report=config.getboolean( "Reports", "writeTagAllocationReports")) self._set_up_pacman_algorthms_listings( partitioner_algorithm=config.get("Partitioner", "algorithm"), placer_algorithm=config.get("Placer", "algorithm"), key_allocator_algorithm=config.get( "KeyAllocator", "algorithm"), routing_algorithm=config.get("Routing", "algorithm")) # set up exeuctable specifics self._set_up_executable_specifics() self._set_up_report_specifics( default_report_file_path=config.get( "Reports", "defaultReportFilePath"), max_reports_kept=config.getint("Reports", "max_reports_kept"), reports_are_enabled=config.getboolean( "Reports", "reportsEnabled"), write_provance_data=config.getboolean( "Reports", "writeProvanceData"), write_text_specs=config.getboolean( "Reports", "writeTextSpecs")) self._set_up_output_application_data_specifics( max_application_binaries_kept=config.getint( "Reports", "max_application_binaries_kept"), where_to_write_application_data_files=config.get( "Reports", "defaultApplicationDataFilePath")) # set up spynnaker specifics, such as setting the machineName from conf self._set_up_machine_specifics( timestep, min_delay, max_delay, host_name) self._spikes_per_second = float(config.getfloat( "Simulation", "spikes_per_second")) self._ring_buffer_sigma = float(config.getfloat( "Simulation", "ring_buffer_sigma")) # Determine default executable folder location # and add this default to end of list of search paths executable_finder.add_path(os.path.dirname(model_binaries.__file__)) FrontEndCommonInterfaceFunctions.__init__( self, self._reports_states, self._report_default_directory, self._app_data_runtime_folder) logger.info("Setting time scale factor to {}." .format(self._time_scale_factor)) logger.info("Setting appID to %d." % self._app_id) # get the machine time step logger.info("Setting machine time step to {} micro-seconds." .format(self._machine_time_step)) self._edge_count = 0 # Manager of buffered sending self._send_buffer_manager = None
def _set_up_timings(self, timestep, min_delay, max_delay): self._machine_time_step = config.getint("Machine", "machineTimeStep") # deal with params allowed via the setup options if timestep is not None: # convert into milliseconds from microseconds timestep *= 1000 self._machine_time_step = timestep if min_delay is not None and float(min_delay * 1000) < 1.0 * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support min delays below {} ms with the " "current machine time step" .format(constants.MIN_SUPPORTED_DELAY * timestep)) natively_supported_delay_for_models = \ constants.MAX_SUPPORTED_DELAY_TICS delay_extension_max_supported_delay = \ constants.MAX_DELAY_BLOCKS \ * constants.MAX_TIMER_TICS_SUPPORTED_PER_BLOCK max_delay_tics_supported = \ natively_supported_delay_for_models + \ delay_extension_max_supported_delay if max_delay is not None\ and float(max_delay * 1000) > max_delay_tics_supported * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support max delays above {} ms with the " "current machine time step".format(0.144 * timestep)) if min_delay is not None: self._min_supported_delay = min_delay else: self._min_supported_delay = timestep / 1000.0 if max_delay is not None: self._max_supported_delay = max_delay else: self._max_supported_delay = (max_delay_tics_supported * (timestep / 1000.0)) if (config.has_option("Machine", "timeScaleFactor") and config.get("Machine", "timeScaleFactor") != "None"): self._time_scale_factor = \ config.getint("Machine", "timeScaleFactor") if timestep * self._time_scale_factor < 1000: if config.getboolean( "Mode", "violate_1ms_wall_clock_restriction"): logger.warn( "****************************************************") logger.warn( "*** The combination of simulation time step and ***") logger.warn( "*** the machine time scale factor results in a ***") logger.warn( "*** wall clock timer tick that is currently not ***") logger.warn( "*** reliably supported by the spinnaker machine. ***") logger.warn( "****************************************************") else: raise common_exceptions.ConfigurationException( "The combination of simulation time step and the" " machine time scale factor results in a wall clock " "timer tick that is currently not reliably supported " "by the spinnaker machine. If you would like to " "override this behaviour (at your own risk), please " "add violate_1ms_wall_clock_restriction = True to the " "[Mode] section of your .spynnaker.cfg file") else: self._time_scale_factor = max(1, math.ceil(1000.0 / float(timestep))) if self._time_scale_factor > 1: logger.warn("A timestep was entered that has forced sPyNNaker " "to automatically slow the simulation down from " "real time by a factor of {}. To remove this " "automatic behaviour, please enter a " "timescaleFactor value in your .spynnaker.cfg" .format(self._time_scale_factor))
def _create_pacman_executor_inputs( self, this_run_time, is_resetting=False): application_graph_changed = \ self._detect_if_graph_has_changed(not is_resetting) inputs = list() # file path to store any provenance data to provenance_file_path = \ os.path.join(self._report_default_directory, "provance_data") if not os.path.exists(provenance_file_path): os.mkdir(provenance_file_path) # all modes need the NoSyncChanges if application_graph_changed: self._no_sync_changes = 0 inputs.append( {'type': "NoSyncChanges", 'value': self._no_sync_changes}) # support resetting the machine during start up if (config.getboolean("Machine", "reset_machine_on_startup") and not self._has_ran and not is_resetting): inputs.append( {"type": "ResetMachineOnStartupFlag", 'value': True}) else: inputs.append( {"type": "ResetMachineOnStartupFlag", 'value': False}) # support runtime updater if self._has_ran and not is_resetting: no_machine_time_steps =\ int((this_run_time * 1000.0) / self._machine_time_step) inputs.append({'type': "RunTimeMachineTimeSteps", 'value': no_machine_time_steps}) # FrontEndCommonPartitionableGraphApplicationDataLoader after a # reset and no changes if not self._has_ran and not application_graph_changed: inputs.append(({ 'type': "ProcessorToAppDataBaseAddress", "value": self._processor_to_app_data_base_address_mapper})) inputs.append({"type": "PlacementToAppDataFilePaths", 'value': self._placement_to_app_data_file_paths}) inputs.append({'type': "WriteCheckerFlag", 'value': config.getboolean( "Mode", "verify_writes")}) # support resetting when there's changes in the application graph # (only need to exit) if application_graph_changed and is_resetting: inputs.append({"type": "MemoryTransciever", 'value': self._txrx}) inputs.append({'type': "ExecutableTargets", 'value': self._executable_targets}) inputs.append({'type': "MemoryPlacements", 'value': self._placements}) inputs.append({'type': "MemoryGraphMapper", 'value': self._graph_mapper}) inputs.append({'type': "APPID", 'value': self._app_id}) inputs.append({'type': "RanToken", 'value': self._has_ran}) elif application_graph_changed and not is_resetting: # make a folder for the json files to be stored in json_folder = os.path.join( self._report_default_directory, "json_files") if not os.path.exists(json_folder): os.mkdir(json_folder) # translate config "None" to None width = config.get("Machine", "width") height = config.get("Machine", "height") if width == "None": width = None else: width = int(width) if height == "None": height = None else: height = int(height) number_of_boards = config.get("Machine", "number_of_boards") if number_of_boards == "None": number_of_boards = None scamp_socket_addresses = config.get("Machine", "scamp_connections_data") if scamp_socket_addresses == "None": scamp_socket_addresses = None boot_port_num = config.get("Machine", "boot_connection_port_num") if boot_port_num == "None": boot_port_num = None else: boot_port_num = int(boot_port_num) inputs.append({'type': "MemoryPartitionableGraph", 'value': self._partitionable_graph}) inputs.append({'type': 'ReportFolder', 'value': self._report_default_directory}) inputs.append({'type': "ApplicationDataFolder", 'value': self._app_data_runtime_folder}) inputs.append({'type': 'IPAddress', 'value': self._hostname}) # basic input stuff inputs.append({'type': "BMPDetails", 'value': config.get("Machine", "bmp_names")}) inputs.append({'type': "DownedChipsDetails", 'value': config.get("Machine", "down_chips")}) inputs.append({'type': "DownedCoresDetails", 'value': config.get("Machine", "down_cores")}) inputs.append({'type': "BoardVersion", 'value': config.getint("Machine", "version")}) inputs.append({'type': "NumberOfBoards", 'value': number_of_boards}) inputs.append({'type': "MachineWidth", 'value': width}) inputs.append({'type': "MachineHeight", 'value': height}) inputs.append({'type': "AutoDetectBMPFlag", 'value': config.getboolean("Machine", "auto_detect_bmp")}) inputs.append({'type': "EnableReinjectionFlag", 'value': config.getboolean("Machine", "enable_reinjection")}) inputs.append({'type': "ScampConnectionData", 'value': scamp_socket_addresses}) inputs.append({'type': "BootPortNum", 'value': boot_port_num}) inputs.append({'type': "APPID", 'value': self._app_id}) inputs.append({'type': "RunTime", 'value': this_run_time}) inputs.append({'type': "TimeScaleFactor", 'value': self._time_scale_factor}) inputs.append({'type': "MachineTimeStep", 'value': self._machine_time_step}) inputs.append({'type': "DatabaseSocketAddresses", 'value': self._database_socket_addresses}) inputs.append({'type': "DatabaseWaitOnConfirmationFlag", 'value': config.getboolean( "Database", "wait_on_confirmation")}) inputs.append({'type': "WriteCheckerFlag", 'value': config.getboolean( "Mode", "verify_writes")}) inputs.append({'type': "WriteTextSpecsFlag", 'value': config.getboolean( "Reports", "writeTextSpecs")}) inputs.append({'type': "ExecutableFinder", 'value': executable_finder}) inputs.append({'type': "MachineHasWrapAroundsFlag", 'value': config.getboolean( "Machine", "requires_wrap_arounds")}) inputs.append({'type': "ReportStates", 'value': self._reports_states}) inputs.append({'type': "UserCreateDatabaseFlag", 'value': config.get("Database", "create_database")}) inputs.append({'type': "ExecuteMapping", 'value': config.getboolean( "Database", "create_routing_info_to_neuron_id_mapping")}) inputs.append({'type': "DatabaseSocketAddresses", 'value': self._database_socket_addresses}) inputs.append({'type': "SendStartNotifications", 'value': config.getboolean( "Database", "send_start_notification")}) inputs.append({'type': "ProvenanceFilePath", 'value': provenance_file_path}) # add paths for each file based version inputs.append({'type': "FileCoreAllocationsFilePath", 'value': os.path.join( json_folder, "core_allocations.json")}) inputs.append({'type': "FileSDRAMAllocationsFilePath", 'value': os.path.join( json_folder, "sdram_allocations.json")}) inputs.append({'type': "FileMachineFilePath", 'value': os.path.join( json_folder, "machine.json")}) inputs.append({'type': "FilePartitionedGraphFilePath", 'value': os.path.join( json_folder, "partitioned_graph.json")}) inputs.append({'type': "FilePlacementFilePath", 'value': os.path.join( json_folder, "placements.json")}) inputs.append({'type': "FileRouingPathsFilePath", 'value': os.path.join( json_folder, "routing_paths.json")}) inputs.append({'type': "FileConstraintsFilePath", 'value': os.path.join( json_folder, "constraints.json")}) if self._has_ran: logger.warn( "The network has changed, and therefore mapping will be" " done again. Any recorded data will be erased.") else: # mapping does not need to be executed, therefore add # the data elements needed for the application runner and # runtime re-setter inputs.append({"type": "BufferManager", "value": self._buffer_manager}) inputs.append({'type': "DatabaseWaitOnConfirmationFlag", 'value': config.getboolean( "Database", "wait_on_confirmation")}) inputs.append({'type': "SendStartNotifications", 'value': config.getboolean( "Database", "send_start_notification")}) inputs.append({'type': "DatabaseInterface", 'value': self._database_interface}) inputs.append({"type": "DatabaseSocketAddresses", 'value': self._database_socket_addresses}) inputs.append({'type': "DatabaseFilePath", 'value': self._database_file_path}) inputs.append({'type': "ExecutableTargets", 'value': self._executable_targets}) inputs.append({'type': "APPID", 'value': self._app_id}) inputs.append({"type": "MemoryTransciever", 'value': self._txrx}) inputs.append({"type": "RunTime", 'value': this_run_time}) inputs.append({'type': "TimeScaleFactor", 'value': self._time_scale_factor}) inputs.append({'type': "LoadedReverseIPTagsToken", 'value': True}) inputs.append({'type': "LoadedIPTagsToken", 'value': True}) inputs.append({'type': "LoadedRoutingTablesToken", 'value': True}) inputs.append({'type': "LoadBinariesToken", 'value': True}) inputs.append({'type': "LoadedApplicationDataToken", 'value': True}) inputs.append({'type': "MemoryPlacements", 'value': self._placements}) inputs.append({'type': "MemoryGraphMapper", 'value': self._graph_mapper}) inputs.append({'type': "MemoryPartitionableGraph", 'value': self._partitionable_graph}) inputs.append({'type': "MemoryExtendedMachine", 'value': self._machine}) inputs.append({'type': "MemoryRoutingTables", 'value': self._router_tables}) inputs.append({'type': "ProvenanceFilePath", 'value': provenance_file_path}) inputs.append({'type': "RanToken", 'value': self._has_ran}) return inputs, application_graph_changed
def __init__(self, host_name=None, timestep=None, min_delay=None, max_delay=None, graph_label=None, database_socket_addresses=None): self._hostname = host_name # update graph label if needed if graph_label is None: graph_label = "Application_graph" # delays parameters self._min_supported_delay = None self._max_supported_delay = None # pacman objects self._partitionable_graph = PartitionableGraph(label=graph_label) self._partitioned_graph = None self._graph_mapper = None self._placements = None self._router_tables = None self._routing_infos = None self._tags = None self._machine = None self._txrx = None self._reports_states = None self._app_id = None self._buffer_manager = None # database objects self._database_socket_addresses = set() if database_socket_addresses is not None: self._database_socket_addresses.union(database_socket_addresses) self._database_interface = None self._create_database = None self._database_file_path = None # Determine default executable folder location # and add this default to end of list of search paths executable_finder.add_path(os.path.dirname(model_binaries.__file__)) # population holders self._populations = list() self._projections = list() self._multi_cast_vertex = None self._edge_count = 0 self._live_spike_recorder = dict() # holder for the executable targets (which we will need for reset and # pause and resume functionality self._executable_targets = None # holders for data needed for reset when nothing changes in the # application graph self._processor_to_app_data_base_address_mapper = None self._placement_to_app_data_file_paths = None # holder for timing related values self._has_ran = False self._has_reset_last = False self._current_run_ms = 0 self._no_machine_time_steps = None self._machine_time_step = None self._no_sync_changes = 0 # state thats needed the first time around if self._app_id is None: self._app_id = config.getint("Machine", "appID") if config.getboolean("Reports", "reportsEnabled"): self._reports_states = ReportState( config.getboolean("Reports", "writePartitionerReports"), config.getboolean("Reports", "writePlacerReportWithPartitionable"), config.getboolean("Reports", "writePlacerReportWithoutPartitionable"), config.getboolean("Reports", "writeRouterReports"), config.getboolean("Reports", "writeRouterInfoReport"), config.getboolean("Reports", "writeTextSpecs"), config.getboolean("Reports", "writeReloadSteps"), config.getboolean("Reports", "writeTransceiverReport"), config.getboolean("Reports", "outputTimesForSections"), config.getboolean("Reports", "writeTagAllocationReports")) # set up reports default folder self._report_default_directory, this_run_time_string = \ helpful_functions.set_up_report_specifics( default_report_file_path=config.get( "Reports", "defaultReportFilePath"), max_reports_kept=config.getint( "Reports", "max_reports_kept"), app_id=self._app_id) # set up application report folder self._app_data_runtime_folder = \ helpful_functions.set_up_output_application_data_specifics( max_application_binaries_kept=config.getint( "Reports", "max_application_binaries_kept"), where_to_write_application_data_files=config.get( "Reports", "defaultApplicationDataFilePath"), app_id=self._app_id, this_run_time_string=this_run_time_string) self._spikes_per_second = float(config.getfloat( "Simulation", "spikes_per_second")) self._ring_buffer_sigma = float(config.getfloat( "Simulation", "ring_buffer_sigma")) # set up machine targeted data self._set_up_machine_specifics(timestep, min_delay, max_delay, host_name) logger.info("Setting time scale factor to {}." .format(self._time_scale_factor)) logger.info("Setting appID to %d." % self._app_id) # get the machine time step logger.info("Setting machine time step to {} micro-seconds." .format(self._machine_time_step))
def _set_up_machine_specifics(self, timestep, min_delay, max_delay, hostname): self._machine_time_step = config.getint("Machine", "machineTimeStep") # deal with params allowed via the setup options if timestep is not None: # convert into milliseconds from microseconds timestep *= 1000 self._machine_time_step = timestep if min_delay is not None and float(min_delay * 1000) < 1.0 * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support min delays below {} ms with the " "current machine time step" .format(constants.MIN_SUPPORTED_DELAY * timestep)) natively_supported_delay_for_models = \ constants.MAX_SUPPORTED_DELAY_TICS delay_extention_max_supported_delay = \ constants.MAX_DELAY_BLOCKS \ * constants.MAX_TIMER_TICS_SUPPORTED_PER_BLOCK max_delay_tics_supported = \ natively_supported_delay_for_models + \ delay_extention_max_supported_delay if max_delay is not None\ and float(max_delay * 1000) > max_delay_tics_supported * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support max delays above {} ms with the " "current machine time step".format(0.144 * timestep)) if min_delay is not None: self._min_supported_delay = min_delay else: self._min_supported_delay = timestep / 1000.0 if max_delay is not None: self._max_supported_delay = max_delay else: self._max_supported_delay = (max_delay_tics_supported * (timestep / 1000.0)) if (config.has_option("Machine", "timeScaleFactor") and config.get("Machine", "timeScaleFactor") != "None"): self._time_scale_factor = \ config.getint("Machine", "timeScaleFactor") if timestep * self._time_scale_factor < 1000: logger.warn("the combination of machine time step and the " "machine time scale factor results in a real " "timer tick that is currently not reliably " "supported by the spinnaker machine.") else: self._time_scale_factor = max(1, math.ceil(1000.0 / float(timestep))) if self._time_scale_factor > 1: logger.warn("A timestep was entered that has forced pacman103 " "to automatically slow the simulation down from " "real time by a factor of {}. To remove this " "automatic behaviour, please enter a " "timescaleFactor value in your .pacman.cfg" .format(self._time_scale_factor)) if hostname is not None: self._hostname = hostname logger.warn("The machine name from PYNN setup is overriding the " "machine name defined in the spynnaker.cfg file") elif config.has_option("Machine", "machineName"): self._hostname = config.get("Machine", "machineName") else: raise Exception("A SpiNNaker machine must be specified in " "spynnaker.cfg.") use_virtual_board = config.getboolean("Machine", "virtual_board") if self._hostname == 'None' and not use_virtual_board: raise Exception("A SpiNNaker machine must be specified in " "spynnaker.cfg.")
def __init__(self, n_neurons, binary, label, max_atoms_per_core, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, incoming_spike_buffer_size, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): AbstractPartitionableVertex.__init__(self, n_neurons, label, max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__(self, machine_time_step, timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractVRecordable.__init__(self) AbstractGSynRecordable.__init__(self) AbstractProvidesOutgoingPartitionConstraints.__init__(self) AbstractProvidesIncomingPartitionConstraints.__init__(self) AbstractPopulationInitializable.__init__(self) AbstractPopulationSettable.__init__(self) AbstractChangableAfterRun.__init__(self) self._binary = binary self._label = label self._machine_time_step = machine_time_step self._timescale_factor = timescale_factor self._incoming_spike_buffer_size = incoming_spike_buffer_size if incoming_spike_buffer_size is None: self._incoming_spike_buffer_size = config.getint( "Simulation", "incoming_spike_buffer_size") self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._spike_recorder = SpikeRecorder(machine_time_step) self._v_recorder = VRecorder(machine_time_step) self._gsyn_recorder = GsynRecorder(machine_time_step) self._spike_buffer_max_size = config.getint("Buffers", "spike_buffer_size") self._v_buffer_max_size = config.getint("Buffers", "v_buffer_size") self._gsyn_buffer_max_size = config.getint("Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint("Buffers", "time_between_requests") self._minimum_buffer_sdram = config.getint("Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume") self._receive_buffer_host = config.get("Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint("Buffers", "receive_buffer_port") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") # Set up synapse handling self._synapse_manager = SynapticManager(synapse_type, machine_time_step, ring_buffer_sigma, spikes_per_second) # bool for if state has changed. self._change_requires_mapping = True
def set_recording_spikes(self): ip_address = config.get("Buffers", "receive_buffer_host") port = config.getint("Buffers", "receive_buffer_port") self.set_buffering_output(ip_address, port) self._spike_recorder.record = True
def __init__( self, n_neurons, machine_time_step, timescale_factor, spike_times=None, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=(constants.SPIKE_BUFFER_SIZE_BUFFERING_IN), space_before_notification=640, constraints=None, label="SpikeSourceArray", spike_recorder_buffer_size=(constants.EIEIO_SPIKE_BUFFER_SIZE_BUFFERING_OUT), buffer_size_before_receive=(constants.EIEIO_BUFFER_SIZE_BEFORE_RECEIVE), ): self._ip_address = ip_address if ip_address is None: self._ip_address = config.get("Buffers", "receive_buffer_host") self._port = port if port is None: self._port = config.getint("Buffers", "receive_buffer_port") if spike_times is None: spike_times = [] ReverseIpTagMultiCastSource.__init__( self, n_keys=n_neurons, machine_time_step=machine_time_step, timescale_factor=timescale_factor, label=label, constraints=constraints, max_atoms_per_core=(SpikeSourceArray._model_based_max_atoms_per_core), board_address=board_address, receive_port=None, receive_sdp_port=None, receive_tag=None, virtual_key=None, prefix=None, prefix_type=None, check_keys=False, send_buffer_times=spike_times, send_buffer_max_space=max_on_chip_memory_usage_for_spikes_in_bytes, send_buffer_space_before_notify=space_before_notification, send_buffer_notification_ip_address=self._ip_address, send_buffer_notification_port=self._port, send_buffer_notification_tag=tag, ) AbstractSpikeRecordable.__init__(self) AbstractProvidesOutgoingEdgeConstraints.__init__(self) SimplePopulationSettable.__init__(self) AbstractMappable.__init__(self) AbstractHasFirstMachineTimeStep.__init__(self) # handle recording self._spike_recorder = EIEIOSpikeRecorder(machine_time_step) self._spike_recorder_buffer_size = spike_recorder_buffer_size self._buffer_size_before_receive = buffer_size_before_receive # Keep track of any previously generated buffers self._send_buffers = dict() self._spike_recording_region_size = None self._partitioned_vertices = list() self._partitioned_vertices_current_max_buffer_size = dict() # used for reset and rerun self._requires_mapping = True self._last_runtime_position = 0 self._max_on_chip_memory_usage_for_spikes = max_on_chip_memory_usage_for_spikes_in_bytes self._space_before_notification = space_before_notification if self._max_on_chip_memory_usage_for_spikes is None: self._max_on_chip_memory_usage_for_spikes = front_end_common_constants.MAX_SIZE_OF_BUFFERED_REGION_ON_CHIP # check the values do not conflict with chip memory limit if self._max_on_chip_memory_usage_for_spikes < 0: raise exceptions.ConfigurationException( "The memory usage on chip is either beyond what is supportable" " on the spinnaker board being supported or you have requested" " a negative value for a memory usage. Please correct and" " try again" ) if self._max_on_chip_memory_usage_for_spikes < self._space_before_notification: self._space_before_notification = self._max_on_chip_memory_usage_for_spikes
def __init__( self, n_neurons, machine_time_step, timescale_factor, spike_times=None, port=None, tag=None, ip_address=None, board_address=None, max_on_chip_memory_usage_for_spikes_in_bytes=( constants.SPIKE_BUFFER_SIZE_BUFFERING_IN), space_before_notification=640, constraints=None, label="SpikeSourceArray", spike_recorder_buffer_size=( constants.EIEIO_SPIKE_BUFFER_SIZE_BUFFERING_OUT), buffer_size_before_receive=( constants.EIEIO_BUFFER_SIZE_BEFORE_RECEIVE)): self._ip_address = ip_address if ip_address is None: self._ip_address = config.get("Buffers", "receive_buffer_host") self._port = port if port is None: self._port = config.getint("Buffers", "receive_buffer_port") if spike_times is None: spike_times = [] self._minimum_sdram_for_buffering = config.getint( "Buffers", "minimum_buffer_sdram") self._using_auto_pause_and_resume = config.getboolean( "Buffers", "use_auto_pause_and_resume") ReverseIpTagMultiCastSource.__init__( self, n_keys=n_neurons, machine_time_step=machine_time_step, timescale_factor=timescale_factor, label=label, constraints=constraints, max_atoms_per_core=(SpikeSourceArray. _model_based_max_atoms_per_core), board_address=board_address, receive_port=None, receive_sdp_port=None, receive_tag=None, virtual_key=None, prefix=None, prefix_type=None, check_keys=False, send_buffer_times=spike_times, send_buffer_max_space=max_on_chip_memory_usage_for_spikes_in_bytes, send_buffer_space_before_notify=space_before_notification, send_buffer_notification_ip_address=self._ip_address, send_buffer_notification_port=self._port, send_buffer_notification_tag=tag) AbstractSpikeRecordable.__init__(self) AbstractProvidesOutgoingPartitionConstraints.__init__(self) SimplePopulationSettable.__init__(self) AbstractChangableAfterRun.__init__(self) AbstractHasFirstMachineTimeStep.__init__(self) # handle recording self._spike_recorder = EIEIOSpikeRecorder(machine_time_step) self._spike_recorder_buffer_size = spike_recorder_buffer_size self._buffer_size_before_receive = buffer_size_before_receive # Keep track of any previously generated buffers self._send_buffers = dict() self._spike_recording_region_size = None self._partitioned_vertices = list() self._partitioned_vertices_current_max_buffer_size = dict() # used for reset and rerun self._requires_mapping = True self._last_runtime_position = 0 self._max_on_chip_memory_usage_for_spikes = \ max_on_chip_memory_usage_for_spikes_in_bytes self._space_before_notification = space_before_notification if self._max_on_chip_memory_usage_for_spikes is None: self._max_on_chip_memory_usage_for_spikes = \ front_end_common_constants.MAX_SIZE_OF_BUFFERED_REGION_ON_CHIP # check the values do not conflict with chip memory limit if self._max_on_chip_memory_usage_for_spikes < 0: raise exceptions.ConfigurationException( "The memory usage on chip is either beyond what is supportable" " on the spinnaker board being supported or you have requested" " a negative value for a memory usage. Please correct and" " try again") if (self._max_on_chip_memory_usage_for_spikes < self._space_before_notification): self._space_before_notification =\ self._max_on_chip_memory_usage_for_spikes
def __init__(self, host_name=None, timestep=None, min_delay=None, max_delay=None, graph_label=None, database_socket_addresses=None): FrontEndCommonConfigurationFunctions.__init__(self, host_name, graph_label) SpynnakerConfigurationFunctions.__init__(self) FrontEndCommonProvenanceFunctions.__init__(self) self._database_socket_addresses = set() self._database_interface = None self._create_database = None self._populations = list() if self._app_id is None: self._set_up_main_objects( app_id=config.getint("Machine", "appID"), execute_data_spec_report=config.getboolean( "Reports", "writeTextSpecs"), execute_partitioner_report=config.getboolean( "Reports", "writePartitionerReports"), execute_placer_report=config.getboolean( "Reports", "writePlacerReports"), execute_router_dat_based_report=config.getboolean( "Reports", "writeRouterDatReport"), reports_are_enabled=config.getboolean("Reports", "reportsEnabled"), generate_performance_measurements=config.getboolean( "Reports", "outputTimesForSections"), execute_router_report=config.getboolean( "Reports", "writeRouterReports"), execute_write_reload_steps=config.getboolean( "Reports", "writeReloadSteps"), generate_transciever_report=config.getboolean( "Reports", "writeTransceiverReport"), execute_routing_info_report=config.getboolean( "Reports", "writeRouterInfoReport"), in_debug_mode=config.get("Mode", "mode") == "Debug", generate_tag_report=config.getboolean( "Reports", "writeTagAllocationReports")) self._set_up_pacman_algorthms_listings( partitioner_algorithm=config.get("Partitioner", "algorithm"), placer_algorithm=config.get("Placer", "algorithm"), key_allocator_algorithm=config.get("KeyAllocator", "algorithm"), routing_algorithm=config.get("Routing", "algorithm")) # set up exeuctable specifics self._set_up_executable_specifics() self._set_up_report_specifics( default_report_file_path=config.get("Reports", "defaultReportFilePath"), max_reports_kept=config.getint("Reports", "max_reports_kept"), reports_are_enabled=config.getboolean("Reports", "reportsEnabled"), write_provance_data=config.getboolean("Reports", "writeProvanceData"), write_text_specs=config.getboolean("Reports", "writeTextSpecs")) self._set_up_output_application_data_specifics( max_application_binaries_kept=config.getint( "Reports", "max_application_binaries_kept"), where_to_write_application_data_files=config.get( "Reports", "defaultApplicationDataFilePath")) # set up spynnaker specifics, such as setting the machineName from conf self._set_up_machine_specifics(timestep, min_delay, max_delay, host_name) self._spikes_per_second = float( config.getfloat("Simulation", "spikes_per_second")) self._ring_buffer_sigma = float( config.getfloat("Simulation", "ring_buffer_sigma")) # Determine default executable folder location # and add this default to end of list of search paths executable_finder.add_path(os.path.dirname(model_binaries.__file__)) FrontEndCommonInterfaceFunctions.__init__( self, self._reports_states, self._report_default_directory, self._app_data_runtime_folder) logger.info("Setting time scale factor to {}.".format( self._time_scale_factor)) logger.info("Setting appID to %d." % self._app_id) # get the machine time step logger.info("Setting machine time step to {} micro-seconds.".format( self._machine_time_step)) self._edge_count = 0 # Manager of buffered sending self._send_buffer_manager = None
height = config.get("Machine", "height") if width == "None": width = None else: width = int(width) if height == "None": height = None else: height = int(height) number_of_boards = config.get("Machine", "number_of_boards") if number_of_boards == "None": number_of_boards = None hostname = config.get("Machine", "machineName") board_version = config.getint("Machine", "version") interfacer = FrontEndCommonMachineInterfacer() interfacer_results = interfacer( hostname=hostname, bmp_details=config.get("Machine", "bmp_names"), downed_chips=config.get("Machine", "down_chips"), downed_cores=config.get("Machine", "down_cores"), board_version=board_version, number_of_boards=number_of_boards, width=width, height=height, auto_detect_bmp=config.getboolean("Machine", "auto_detect_bmp"), enable_reinjection=config.getboolean("Machine", "enable_reinjection"), scamp_connection_data=None, boot_port_num=None, reset_machine_on_start_up=config.get( "Machine", "reset_machine_on_startup"))
def __init__( self, n_neurons, binary, label, max_atoms_per_core, machine_time_step, timescale_factor, spikes_per_second, ring_buffer_sigma, model_name, neuron_model, input_type, synapse_type, threshold_type, additional_input=None, constraints=None): ReceiveBuffersToHostBasicImpl.__init__(self) AbstractPartitionableVertex.__init__( self, n_neurons, label, max_atoms_per_core, constraints) AbstractDataSpecableVertex.__init__( self, machine_time_step, timescale_factor) AbstractSpikeRecordable.__init__(self) AbstractVRecordable.__init__(self) AbstractGSynRecordable.__init__(self) AbstractProvidesOutgoingEdgeConstraints.__init__(self) AbstractProvidesIncomingEdgeConstraints.__init__(self) AbstractPopulationInitializable.__init__(self) AbstractPopulationSettable.__init__(self) AbstractMappable.__init__(self) self._binary = binary self._label = label self._machine_time_step = machine_time_step self._timescale_factor = timescale_factor self._model_name = model_name self._neuron_model = neuron_model self._input_type = input_type self._threshold_type = threshold_type self._additional_input = additional_input # Set up for recording self._spike_recorder = SpikeRecorder(machine_time_step) self._v_recorder = VRecorder(machine_time_step) self._gsyn_recorder = GsynRecorder(machine_time_step) self._spike_buffer_max_size = config.getint( "Buffers", "spike_buffer_size") self._v_buffer_max_size = config.getint( "Buffers", "v_buffer_size") self._gsyn_buffer_max_size = config.getint( "Buffers", "gsyn_buffer_size") self._buffer_size_before_receive = config.getint( "Buffers", "buffer_size_before_receive") self._time_between_requests = config.getint( "Buffers", "time_between_requests") # Set up synapse handling self._synapse_manager = SynapticManager( synapse_type, machine_time_step, ring_buffer_sigma, spikes_per_second) # Get buffering information for later use self._receive_buffer_host = config.get( "Buffers", "receive_buffer_host") self._receive_buffer_port = config.getint( "Buffers", "receive_buffer_port") self._enable_buffered_recording = config.getboolean( "Buffers", "enable_buffered_recording") # bool for if state has changed. self._change_requires_mapping = True
def _create_pacman_executor_inputs(self): # make a folder for the json files to be stored in json_folder = os.path.join( self._report_default_directory, "json_files") if not os.path.exists(json_folder): os.mkdir(json_folder) # file path to store any provenance data to provenance_file_path = os.path.join(self._report_default_directory, "provance_data") if not os.path.exists(provenance_file_path): os.mkdir(provenance_file_path) # translate config "None" to None width = config.get("Machine", "width") height = config.get("Machine", "height") if width == "None": width = None else: width = int(width) if height == "None": height = None else: height = int(height) number_of_boards = config.get("Machine", "number_of_boards") if number_of_boards == "None": number_of_boards = None scamp_socket_addresses = config.get( "Machine", "scamp_connections_data") if scamp_socket_addresses == "None": scamp_socket_addresses = None boot_port_num = config.get("Machine", "boot_connection_port_num") if boot_port_num == "None": boot_port_num = None else: boot_port_num = int(boot_port_num) inputs = list() inputs.append({'type': "MemoryPartitionableGraph", 'value': self._partitionable_graph}) inputs.append({'type': 'ReportFolder', 'value': self._report_default_directory}) inputs.append({'type': "ApplicationDataFolder", 'value': self._app_data_runtime_folder}) inputs.append({'type': 'IPAddress', 'value': self._hostname}) # basic input stuff inputs.append({'type': "BMPDetails", 'value': config.get("Machine", "bmp_names")}) inputs.append({'type': "DownedChipsDetails", 'value': config.get("Machine", "down_chips")}) inputs.append({'type': "DownedCoresDetails", 'value': config.get("Machine", "down_cores")}) inputs.append({'type': "BoardVersion", 'value': config.getint("Machine", "version")}) inputs.append({'type': "NumberOfBoards", 'value': number_of_boards}) inputs.append({'type': "MachineWidth", 'value': width}) inputs.append({'type': "MachineHeight", 'value': height}) inputs.append({'type': "AutoDetectBMPFlag", 'value': config.getboolean("Machine", "auto_detect_bmp")}) inputs.append({'type': "EnableReinjectionFlag", 'value': config.getboolean("Machine", "enable_reinjection")}) inputs.append({'type': "ScampConnectionData", 'value': scamp_socket_addresses}) inputs.append({'type': "BootPortNum", 'value': boot_port_num}) inputs.append({'type': "APPID", 'value': self._app_id}) inputs.append({'type': "RunTime", 'value': self._runtime}) inputs.append({'type': "TimeScaleFactor", 'value': self._time_scale_factor}) inputs.append({'type': "MachineTimeStep", 'value': self._machine_time_step}) inputs.append({'type': "DatabaseSocketAddresses", 'value': self._database_socket_addresses}) inputs.append({'type': "DatabaseWaitOnConfirmationFlag", 'value': config.getboolean("Database", "wait_on_confirmation")}) inputs.append({'type': "WriteCheckerFlag", 'value': config.getboolean("Mode", "verify_writes")}) inputs.append({'type': "WriteTextSpecsFlag", 'value': config.getboolean("Reports", "writeTextSpecs")}) inputs.append({'type': "ExecutableFinder", 'value': executable_finder}) inputs.append({'type': "MachineHasWrapAroundsFlag", 'value': config.getboolean("Machine", "requires_wrap_arounds")}) inputs.append({'type': "ReportStates", 'value': self._reports_states}) inputs.append({'type': "UserCreateDatabaseFlag", 'value': config.get("Database", "create_database")}) inputs.append({'type': "ExecuteMapping", 'value': config.getboolean( "Database", "create_routing_info_to_neuron_id_mapping")}) inputs.append({'type': "DatabaseSocketAddresses", 'value': self._database_socket_addresses}) inputs.append({'type': "SendStartNotifications", 'value': config.getboolean("Database", "send_start_notification")}) inputs.append({'type': "ProvenanceFilePath", 'value': provenance_file_path}) # add paths for each file based version inputs.append({'type': "FileCoreAllocationsFilePath", 'value': os.path.join( json_folder, "core_allocations.json")}) inputs.append({'type': "FileSDRAMAllocationsFilePath", 'value': os.path.join( json_folder, "sdram_allocations.json")}) inputs.append({'type': "FileMachineFilePath", 'value': os.path.join( json_folder, "machine.json")}) inputs.append({'type': "FilePartitionedGraphFilePath", 'value': os.path.join( json_folder, "partitioned_graph.json")}) inputs.append({'type': "FilePlacementFilePath", 'value': os.path.join( json_folder, "placements.json")}) inputs.append({'type': "FileRouingPathsFilePath", 'value': os.path.join( json_folder, "routing_paths.json")}) inputs.append({'type': "FileConstraintsFilePath", 'value': os.path.join( json_folder, "constraints.json")}) return inputs
def run(self, run_time): """ :param run_time: :return: """ # sort out config param to be valid types width = config.get("Machine", "width") height = config.get("Machine", "height") if width == "None": width = None else: width = int(width) if height == "None": height = None else: height = int(height) number_of_boards = config.get("Machine", "number_of_boards") if number_of_boards == "None": number_of_boards = None self.setup_interfaces( hostname=self._hostname, bmp_details=config.get("Machine", "bmp_names"), downed_chips=config.get("Machine", "down_chips"), downed_cores=config.get("Machine", "down_cores"), board_version=config.getint("Machine", "version"), number_of_boards=number_of_boards, width=width, height=height, is_virtual=config.getboolean("Machine", "virtual_board"), virtual_has_wrap_arounds=config.getboolean( "Machine", "requires_wrap_arounds"), auto_detect_bmp=config.getboolean("Machine", "auto_detect_bmp")) # adds extra stuff needed by the reload script which cannot be given # directly. if self._reports_states.transciever_report: self._reload_script.runtime = run_time self._reload_script.time_scale_factor = self._time_scale_factor # create network report if needed if self._reports_states is not None: reports.network_specification_partitionable_report( self._report_default_directory, self._partitionable_graph, self._hostname) # calculate number of machine time steps if run_time is not None: self._no_machine_time_steps =\ int((run_time * 1000.0) / self._machine_time_step) ceiled_machine_time_steps = \ math.ceil((run_time * 1000.0) / self._machine_time_step) if self._no_machine_time_steps != ceiled_machine_time_steps: raise common_exceptions.ConfigurationException( "The runtime and machine time step combination result in " "a factional number of machine runable time steps and " "therefore spinnaker cannot determine how many to run for") for vertex in self._partitionable_graph.vertices: if isinstance(vertex, AbstractDataSpecableVertex): vertex.set_no_machine_time_steps( self._no_machine_time_steps) else: self._no_machine_time_steps = None logger.warn("You have set a runtime that will never end, this may" "cause the neural models to fail to partition " "correctly") for vertex in self._partitionable_graph.vertices: if (isinstance(vertex, AbstractPopulationRecordableVertex) and vertex.record): raise common_exceptions.ConfigurationException( "recording a population when set to infinite runtime " "is not currently supportable in this tool chain." "watch this space") do_timing = config.getboolean("Reports", "outputTimesForSections") if do_timing: timer = Timer() else: timer = None self.set_runtime(run_time) logger.info("*** Running Mapper *** ") if do_timing: timer.start_timing() self.map_model() if do_timing: timer.take_sample() # add database generation if requested needs_database = self._auto_detect_database(self._partitioned_graph) user_create_database = config.get("Database", "create_database") if ((user_create_database == "None" and needs_database) or user_create_database == "True"): wait_on_confirmation = config.getboolean( "Database", "wait_on_confirmation") self._database_interface = SpynnakerDataBaseInterface( self._app_data_runtime_folder, wait_on_confirmation, self._database_socket_addresses) self._database_interface.add_system_params( self._time_scale_factor, self._machine_time_step, self._runtime) self._database_interface.add_machine_objects(self._machine) self._database_interface.add_partitionable_vertices( self._partitionable_graph) self._database_interface.add_partitioned_vertices( self._partitioned_graph, self._graph_mapper, self._partitionable_graph) self._database_interface.add_placements(self._placements, self._partitioned_graph) self._database_interface.add_routing_infos( self._routing_infos, self._partitioned_graph) self._database_interface.add_routing_tables(self._router_tables) self._database_interface.add_tags(self._partitioned_graph, self._tags) execute_mapping = config.getboolean( "Database", "create_routing_info_to_neuron_id_mapping") if execute_mapping: self._database_interface.create_neuron_to_key_mapping( graph_mapper=self._graph_mapper, partitionable_graph=self._partitionable_graph, partitioned_graph=self._partitioned_graph, routing_infos=self._routing_infos) # if using a reload script, add if that needs to wait for # confirmation if self._reports_states.transciever_report: self._reload_script.wait_on_confirmation = wait_on_confirmation for socket_address in self._database_socket_addresses: self._reload_script.add_socket_address(socket_address) self._database_interface.send_read_notification() # execute data spec generation if do_timing: timer.start_timing() logger.info("*** Generating Output *** ") logger.debug("") executable_targets = self.generate_data_specifications() if do_timing: timer.take_sample() # execute data spec execution if do_timing: timer.start_timing() processor_to_app_data_base_address = \ self.execute_data_specification_execution( config.getboolean("SpecExecution", "specExecOnHost"), self._hostname, self._placements, self._graph_mapper, write_text_specs=config.getboolean( "Reports", "writeTextSpecs"), runtime_application_data_folder=self._app_data_runtime_folder, machine=self._machine) if self._reports_states is not None: reports.write_memory_map_report(self._report_default_directory, processor_to_app_data_base_address) if do_timing: timer.take_sample() if (not isinstance(self._machine, VirtualMachine) and config.getboolean("Execute", "run_simulation")): if do_timing: timer.start_timing() logger.info("*** Loading tags ***") self.load_tags(self._tags) if self._do_load is True: logger.info("*** Loading data ***") self._load_application_data( self._placements, self._graph_mapper, processor_to_app_data_base_address, self._hostname, app_data_folder=self._app_data_runtime_folder, verify=config.getboolean("Mode", "verify_writes")) self.load_routing_tables(self._router_tables, self._app_id) logger.info("*** Loading executables ***") self.load_executable_images(executable_targets, self._app_id) logger.info("*** Loading buffers ***") self.set_up_send_buffering(self._partitioned_graph, self._placements, self._tags) # end of entire loading setup if do_timing: timer.take_sample() if self._do_run is True: logger.info("*** Running simulation... *** ") if do_timing: timer.start_timing() # every thing is in sync0. load the initial buffers self._send_buffer_manager.load_initial_buffers() if do_timing: timer.take_sample() wait_on_confirmation = config.getboolean( "Database", "wait_on_confirmation") send_start_notification = config.getboolean( "Database", "send_start_notification") self.wait_for_cores_to_be_ready(executable_targets, self._app_id) # wait till external app is ready for us to start if required if (self._database_interface is not None and wait_on_confirmation): self._database_interface.wait_for_confirmation() self.start_all_cores(executable_targets, self._app_id) if (self._database_interface is not None and send_start_notification): self._database_interface.send_start_notification() if self._runtime is None: logger.info("Application is set to run forever - exiting") else: self.wait_for_execution_to_complete( executable_targets, self._app_id, self._runtime, self._time_scale_factor) self._has_ran = True if self._retrieve_provance_data: progress = ProgressBar(self._placements.n_placements + 1, "getting provenance data") # retrieve provence data from central file_path = os.path.join(self._report_default_directory, "provance_data") # check the directory doesnt already exist if not os.path.exists(file_path): os.mkdir(file_path) # write provanence data self.write_provenance_data_in_xml(file_path, self._txrx) progress.update() # retrieve provenance data from any cores that provide data for placement in self._placements.placements: if isinstance(placement.subvertex, AbstractProvidesProvenanceData): core_file_path = os.path.join( file_path, "Provanence_data_for_{}_{}_{}_{}.xml".format( placement.subvertex.label, placement.x, placement.y, placement.p)) placement.subvertex.write_provenance_data_in_xml( core_file_path, self.transceiver, placement) progress.update() progress.end() elif isinstance(self._machine, VirtualMachine): logger.info( "*** Using a Virtual Machine so no simulation will occur") else: logger.info("*** No simulation requested: Stopping. ***")
def run(self, run_time): """ :param run_time: :return: """ self._setup_interfaces( hostname=self._hostname, virtual_x_dimension=config.getint("Machine", "virtual_board_x_dimension"), virtual_y_dimension=config.getint("Machine", "virtual_board_y_dimension"), downed_chips=config.get("Machine", "down_chips"), downed_cores=config.get("Machine", "down_cores"), requires_virtual_board=config.getboolean("Machine", "virtual_board"), requires_wrap_around=config.getboolean("Machine", "requires_wrap_arounds"), machine_version=config.getint("Machine", "version")) # add database generation if requested if self._create_database: wait_on_confirmation = \ config.getboolean("Database", "wait_on_confirmation") self._database_interface = DataBaseInterface( self._app_data_runtime_folder, wait_on_confirmation, self._database_socket_addresses) # create network report if needed if self._reports_states is not None: reports.network_specification_partitionable_report( self._report_default_directory, self._partitionable_graph, self._hostname) # calculate number of machine time steps if run_time is not None: self._no_machine_time_steps =\ int((run_time * 1000.0) / self._machine_time_step) ceiled_machine_time_steps = \ math.ceil((run_time * 1000.0) / self._machine_time_step) if self._no_machine_time_steps != ceiled_machine_time_steps: raise common_exceptions.ConfigurationException( "The runtime and machine time step combination result in " "a factional number of machine runable time steps and " "therefore spinnaker cannot determine how many to run for") for vertex in self._partitionable_graph.vertices: if isinstance(vertex, AbstractDataSpecableVertex): vertex.set_no_machine_time_steps( self._no_machine_time_steps) else: self._no_machine_time_steps = None logger.warn("You have set a runtime that will never end, this may" "cause the neural models to fail to partition " "correctly") for vertex in self._partitionable_graph.vertices: if vertex.is_set_to_record_spikes(): raise common_exceptions.ConfigurationException( "recording a population when set to infinite runtime " "is not currently supportable in this tool chain." "watch this space") do_timing = config.getboolean("Reports", "outputTimesForSections") if do_timing: timer = Timer() else: timer = None self.set_runtime(run_time) logger.info("*** Running Mapper *** ") if do_timing: timer.start_timing() self.map_model() if do_timing: timer.take_sample() # load database if needed if self._create_database: self._database_interface.add_system_params( self._time_scale_factor, self._machine_time_step, self._runtime) self._database_interface.add_machine_objects(self._machine) self._database_interface.add_partitionable_vertices( self._partitionable_graph) self._database_interface.add_partitioned_vertices( self._partitioned_graph, self._graph_mapper, self._partitionable_graph) self._database_interface.add_placements(self._placements, self._partitioned_graph) self._database_interface.add_routing_infos( self._routing_infos, self._partitioned_graph) self._database_interface.add_routing_tables(self._router_tables) self._database_interface.add_tags(self._partitioned_graph, self._tags) execute_mapping = config.getboolean( "Database", "create_routing_info_to_neuron_id_mapping") if execute_mapping: self._database_interface.create_neuron_to_key_mapping( graph_mapper=self._graph_mapper, partitionable_graph=self._partitionable_graph, partitioned_graph=self._partitioned_graph, routing_infos=self._routing_infos) self._database_interface.send_read_notification() # execute data spec generation if do_timing: timer.start_timing() logger.info("*** Generating Output *** ") logger.debug("") executable_targets = self.generate_data_specifications() if do_timing: timer.take_sample() # execute data spec execution if do_timing: timer.start_timing() processor_to_app_data_base_address = \ self.execute_data_specification_execution( config.getboolean("SpecExecution", "specExecOnHost"), self._hostname, self._placements, self._graph_mapper, write_text_specs=config.getboolean( "Reports", "writeTextSpecs"), runtime_application_data_folder=self._app_data_runtime_folder) if self._reports_states is not None: reports.write_memory_map_report(self._report_default_directory, processor_to_app_data_base_address) if do_timing: timer.take_sample() if (not isinstance(self._machine, VirtualMachine) and config.getboolean("Execute", "run_simulation")): if do_timing: timer.start_timing() logger.info("*** Loading tags ***") self._load_tags(self._tags) if self._do_load is True: logger.info("*** Loading data ***") self._load_application_data( self._placements, self._router_tables, self._graph_mapper, processor_to_app_data_base_address, self._hostname, self._app_id, machine_version=config.getint("Machine", "version"), app_data_folder=self._app_data_runtime_folder) logger.info("*** Loading executables ***") self._load_executable_images( executable_targets, self._app_id, app_data_folder=self._app_data_runtime_folder) logger.info("*** Loading buffers ***") self._set_up_send_buffering() # end of entire loading setup if do_timing: timer.take_sample() if self._do_run is True: logger.info("*** Running simulation... *** ") if self._reports_states.transciever_report: reports.re_load_script_running_aspects( self._app_data_runtime_folder, executable_targets, self._hostname, self._app_id, run_time) # every thing is in sync0. load the initial buffers self._send_buffer_manager.load_initial_buffers() wait_on_confirmation = config.getboolean( "Database", "wait_on_confirmation") send_start_notification = config.getboolean( "Database", "send_start_notification") self._wait_for_cores_to_be_ready(executable_targets, self._app_id) # wait till external app is ready for us to start if required if (self._database_interface is not None and wait_on_confirmation): logger.info( "*** Awaiting for a response from an external source " "to state its ready for the simulation to start ***") self._database_interface.wait_for_confirmation() self._start_all_cores(executable_targets, self._app_id) if (self._database_interface is not None and send_start_notification): self._database_interface.send_start_notification() if self._runtime is None: logger.info("Application is set to run forever - exiting") else: self._wait_for_execution_to_complete( executable_targets, self._app_id, self._runtime, self._time_scale_factor) self._has_ran = True if self._retrieve_provance_data: # retrieve provence data from central file_path = os.path.join(self._report_default_directory, "provance_data") # check the directory doesnt already exist if not os.path.exists(file_path): os.mkdir(file_path) self._write_provanence_data_in_xml(file_path) # retrieve provenance data from any cores that provide data for placement in self._placements: if isinstance(placement.subvertex, AbstractProvidesProvanenceData): file_path = os.path.join( self._report_default_directory, "Provanence_data_for_core:{}:{}:{}" .format(placement.x, placement.y, placement.p)) elif isinstance(self._machine, VirtualMachine): logger.info( "*** Using a Virtual Machine so no simulation will occur") else: logger.info("*** No simulation requested: Stopping. ***")
def run(self, run_time): """ :param run_time: :return: """ # sort out config param to be valid types width = config.get("Machine", "width") height = config.get("Machine", "height") if width == "None": width = None else: width = int(width) if height == "None": height = None else: height = int(height) number_of_boards = config.get("Machine", "number_of_boards") if number_of_boards == "None": number_of_boards = None self.setup_interfaces( hostname=self._hostname, bmp_details=config.get("Machine", "bmp_names"), downed_chips=config.get("Machine", "down_chips"), downed_cores=config.get("Machine", "down_cores"), board_version=config.getint("Machine", "version"), number_of_boards=number_of_boards, width=width, height=height, is_virtual=config.getboolean("Machine", "virtual_board"), virtual_has_wrap_arounds=config.getboolean( "Machine", "requires_wrap_arounds"), auto_detect_bmp=config.getboolean("Machine", "auto_detect_bmp")) # adds extra stuff needed by the reload script which cannot be given # directly. if self._reports_states.transciever_report: self._reload_script.runtime = run_time self._reload_script.time_scale_factor = self._time_scale_factor # create network report if needed if self._reports_states is not None: reports.network_specification_partitionable_report( self._report_default_directory, self._partitionable_graph, self._hostname) # calculate number of machine time steps if run_time is not None: self._no_machine_time_steps =\ int((run_time * 1000.0) / self._machine_time_step) ceiled_machine_time_steps = \ math.ceil((run_time * 1000.0) / self._machine_time_step) if self._no_machine_time_steps != ceiled_machine_time_steps: raise common_exceptions.ConfigurationException( "The runtime and machine time step combination result in " "a factional number of machine runable time steps and " "therefore spinnaker cannot determine how many to run for") for vertex in self._partitionable_graph.vertices: if isinstance(vertex, AbstractDataSpecableVertex): vertex.set_no_machine_time_steps( self._no_machine_time_steps) else: self._no_machine_time_steps = None logger.warn("You have set a runtime that will never end, this may" "cause the neural models to fail to partition " "correctly") for vertex in self._partitionable_graph.vertices: if (isinstance(vertex, AbstractPopulationRecordableVertex) and vertex.record): raise common_exceptions.ConfigurationException( "recording a population when set to infinite runtime " "is not currently supportable in this tool chain." "watch this space") do_timing = config.getboolean("Reports", "outputTimesForSections") if do_timing: timer = Timer() else: timer = None self.set_runtime(run_time) logger.info("*** Running Mapper *** ") if do_timing: timer.start_timing() self.map_model() if do_timing: timer.take_sample() # add database generation if requested needs_database = self._auto_detect_database(self._partitioned_graph) user_create_database = config.get("Database", "create_database") if ((user_create_database == "None" and needs_database) or user_create_database == "True"): wait_on_confirmation = config.getboolean("Database", "wait_on_confirmation") self._database_interface = SpynnakerDataBaseInterface( self._app_data_runtime_folder, wait_on_confirmation, self._database_socket_addresses) self._database_interface.add_system_params(self._time_scale_factor, self._machine_time_step, self._runtime) self._database_interface.add_machine_objects(self._machine) self._database_interface.add_partitionable_vertices( self._partitionable_graph) self._database_interface.add_partitioned_vertices( self._partitioned_graph, self._graph_mapper, self._partitionable_graph) self._database_interface.add_placements(self._placements, self._partitioned_graph) self._database_interface.add_routing_infos(self._routing_infos, self._partitioned_graph) self._database_interface.add_routing_tables(self._router_tables) self._database_interface.add_tags(self._partitioned_graph, self._tags) execute_mapping = config.getboolean( "Database", "create_routing_info_to_neuron_id_mapping") if execute_mapping: self._database_interface.create_neuron_to_key_mapping( graph_mapper=self._graph_mapper, partitionable_graph=self._partitionable_graph, partitioned_graph=self._partitioned_graph, routing_infos=self._routing_infos) # if using a reload script, add if that needs to wait for # confirmation if self._reports_states.transciever_report: self._reload_script.wait_on_confirmation = wait_on_confirmation for socket_address in self._database_socket_addresses: self._reload_script.add_socket_address(socket_address) self._database_interface.send_read_notification() # execute data spec generation if do_timing: timer.start_timing() logger.info("*** Generating Output *** ") logger.debug("") executable_targets = self.generate_data_specifications() if do_timing: timer.take_sample() # execute data spec execution if do_timing: timer.start_timing() processor_to_app_data_base_address = \ self.execute_data_specification_execution( config.getboolean("SpecExecution", "specExecOnHost"), self._hostname, self._placements, self._graph_mapper, write_text_specs=config.getboolean( "Reports", "writeTextSpecs"), runtime_application_data_folder=self._app_data_runtime_folder, machine=self._machine) if self._reports_states is not None: reports.write_memory_map_report( self._report_default_directory, processor_to_app_data_base_address) if do_timing: timer.take_sample() if (not isinstance(self._machine, VirtualMachine) and config.getboolean("Execute", "run_simulation")): if do_timing: timer.start_timing() logger.info("*** Loading tags ***") self.load_tags(self._tags) if self._do_load is True: logger.info("*** Loading data ***") self._load_application_data( self._placements, self._graph_mapper, processor_to_app_data_base_address, self._hostname, app_data_folder=self._app_data_runtime_folder, verify=config.getboolean("Mode", "verify_writes")) self.load_routing_tables(self._router_tables, self._app_id) logger.info("*** Loading executables ***") self.load_executable_images(executable_targets, self._app_id) logger.info("*** Loading buffers ***") self.set_up_send_buffering(self._partitioned_graph, self._placements, self._tags) # end of entire loading setup if do_timing: timer.take_sample() if self._do_run is True: logger.info("*** Running simulation... *** ") if do_timing: timer.start_timing() # every thing is in sync0. load the initial buffers self._send_buffer_manager.load_initial_buffers() if do_timing: timer.take_sample() wait_on_confirmation = config.getboolean( "Database", "wait_on_confirmation") send_start_notification = config.getboolean( "Database", "send_start_notification") self.wait_for_cores_to_be_ready(executable_targets, self._app_id) # wait till external app is ready for us to start if required if (self._database_interface is not None and wait_on_confirmation): self._database_interface.wait_for_confirmation() self.start_all_cores(executable_targets, self._app_id) if (self._database_interface is not None and send_start_notification): self._database_interface.send_start_notification() if self._runtime is None: logger.info("Application is set to run forever - exiting") else: self.wait_for_execution_to_complete( executable_targets, self._app_id, self._runtime, self._time_scale_factor) self._has_ran = True if self._retrieve_provance_data: progress = ProgressBar(self._placements.n_placements + 1, "getting provenance data") # retrieve provence data from central file_path = os.path.join(self._report_default_directory, "provance_data") # check the directory doesnt already exist if not os.path.exists(file_path): os.mkdir(file_path) # write provanence data self.write_provenance_data_in_xml(file_path, self._txrx) progress.update() # retrieve provenance data from any cores that provide data for placement in self._placements.placements: if isinstance(placement.subvertex, AbstractProvidesProvenanceData): core_file_path = os.path.join( file_path, "Provanence_data_for_{}_{}_{}_{}.xml".format( placement.subvertex.label, placement.x, placement.y, placement.p)) placement.subvertex.write_provenance_data_in_xml( core_file_path, self.transceiver, placement) progress.update() progress.end() elif isinstance(self._machine, VirtualMachine): logger.info( "*** Using a Virtual Machine so no simulation will occur") else: logger.info("*** No simulation requested: Stopping. ***")
def generate_data_specifications(self): """ generates the dsg for the graph. :return: """ # iterate though subvertexes and call generate_data_spec for each # vertex executable_targets = dict() no_processors = config.getint("Threading", "dsg_threads") thread_pool = ThreadPool(processes=no_processors) # create a progress bar for end users progress_bar = ProgressBar(len(list(self._placements.placements)), "on generating data specifications") data_generator_interfaces = list() for placement in self._placements.placements: associated_vertex =\ self._graph_mapper.get_vertex_from_subvertex( placement.subvertex) # if the vertex can generate a DSG, call it if isinstance(associated_vertex, AbstractDataSpecableVertex): ip_tags = self._tags.get_ip_tags_for_vertex( placement.subvertex) reverse_ip_tags = self._tags.get_reverse_ip_tags_for_vertex( placement.subvertex) data_generator_interface = DataGeneratorInterface( associated_vertex, placement.subvertex, placement, self._partitioned_graph, self._partitionable_graph, self._routing_infos, self._hostname, self._graph_mapper, self._report_default_directory, ip_tags, reverse_ip_tags, self._writeTextSpecs, self._app_data_runtime_folder, progress_bar) data_generator_interfaces.append(data_generator_interface) thread_pool.apply_async(data_generator_interface.start) # Get name of binary from vertex binary_name = associated_vertex.get_binary_file_name() # Attempt to find this within search paths binary_path = executable_finder.get_executable_path( binary_name) if binary_path is None: raise exceptions.ExecutableNotFoundException(binary_name) if binary_path in executable_targets: executable_targets[binary_path].add_processor(placement.x, placement.y, placement.p) else: processors = [placement.p] initial_core_subset = CoreSubset(placement.x, placement.y, processors) list_of_core_subsets = [initial_core_subset] executable_targets[binary_path] = \ CoreSubsets(list_of_core_subsets) for data_generator_interface in data_generator_interfaces: data_generator_interface.wait_for_finish() thread_pool.close() thread_pool.join() # finish the progress bar progress_bar.end() return executable_targets
def _set_up_timings(self, timestep, min_delay, max_delay): self._machine_time_step = config.getint("Machine", "machineTimeStep") # deal with params allowed via the setup options if timestep is not None: # convert into milliseconds from microseconds timestep *= 1000 self._machine_time_step = timestep if min_delay is not None and float(min_delay * 1000) < 1.0 * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support min delays below {} ms with the " "current machine time step".format( constants.MIN_SUPPORTED_DELAY * timestep)) natively_supported_delay_for_models = \ constants.MAX_SUPPORTED_DELAY_TICS delay_extension_max_supported_delay = \ constants.MAX_DELAY_BLOCKS \ * constants.MAX_TIMER_TICS_SUPPORTED_PER_BLOCK max_delay_tics_supported = \ natively_supported_delay_for_models + \ delay_extension_max_supported_delay if max_delay is not None\ and float(max_delay * 1000) > max_delay_tics_supported * timestep: raise common_exceptions.ConfigurationException( "Pacman does not support max delays above {} ms with the " "current machine time step".format(0.144 * timestep)) if min_delay is not None: self._min_supported_delay = min_delay else: self._min_supported_delay = timestep / 1000.0 if max_delay is not None: self._max_supported_delay = max_delay else: self._max_supported_delay = (max_delay_tics_supported * (timestep / 1000.0)) if (config.has_option("Machine", "timeScaleFactor") and config.get("Machine", "timeScaleFactor") != "None"): self._time_scale_factor = \ config.getint("Machine", "timeScaleFactor") if timestep * self._time_scale_factor < 1000: if config.getboolean("Mode", "violate_1ms_wall_clock_restriction"): logger.warn( "****************************************************") logger.warn( "*** The combination of simulation time step and ***") logger.warn( "*** the machine time scale factor results in a ***") logger.warn( "*** wall clock timer tick that is currently not ***") logger.warn( "*** reliably supported by the spinnaker machine. ***") logger.warn( "****************************************************") else: raise common_exceptions.ConfigurationException( "The combination of simulation time step and the" " machine time scale factor results in a wall clock " "timer tick that is currently not reliably supported " "by the spinnaker machine. If you would like to " "override this behaviour (at your own risk), please " "add violate_1ms_wall_clock_restriction = True to the " "[Mode] section of your .spynnaker.cfg file") else: self._time_scale_factor = max(1, math.ceil(1000.0 / float(timestep))) if self._time_scale_factor > 1: logger.warn( "A timestep was entered that has forced sPyNNaker " "to automatically slow the simulation down from " "real time by a factor of {}. To remove this " "automatic behaviour, please enter a " "timescaleFactor value in your .spynnaker.cfg".format( self._time_scale_factor))
def _set_up_machine_specifics(self, timestep, min_delay, max_delay, hostname): self._machine_time_step = config.getint("Machine", "machineTimeStep") # deal with params allowed via the setup optimals if timestep is not None: timestep *= 1000 # convert into ms from microseconds config.set("Machine", "machineTimeStep", timestep) self._machine_time_step = timestep if min_delay is not None and float(min_delay * 1000) < 1.0 * timestep: raise exceptions.ConfigurationException( "Pacman does not support min delays below {} ms with the " "current machine time step".format(1.0 * timestep)) natively_supported_delay_for_models = \ constants.MAX_SUPPORTED_DELAY_TICS delay_extention_max_supported_delay = \ constants.MAX_DELAY_BLOCKS \ * constants.MAX_TIMER_TICS_SUPPORTED_PER_BLOCK max_delay_tics_supported = \ natively_supported_delay_for_models + \ delay_extention_max_supported_delay if max_delay is not None\ and float(max_delay * 1000) > max_delay_tics_supported * timestep: raise exceptions.ConfigurationException( "Pacman does not support max delays above {} ms with the " "current machine time step".format(0.144 * timestep)) if min_delay is not None: if not config.has_section("Model"): config.add_section("Model") config.set("Model", "min_delay", (min_delay * 1000) / timestep) if max_delay is not None: if not config.has_section("Model"): config.add_section("Model") config.set("Model", "max_delay", (max_delay * 1000) / timestep) if (config.has_option("Machine", "timeScaleFactor") and config.get("Machine", "timeScaleFactor") != "None"): self._time_scale_factor = \ config.getint("Machine", "timeScaleFactor") if timestep * self._time_scale_factor < 1000: logger.warn("the combination of machine time step and the " "machine time scale factor results in a real " "timer tick that is currently not reliably " "supported by the spinnaker machine.") else: self._time_scale_factor = max(1, math.ceil(1000.0 / float(timestep))) if self._time_scale_factor > 1: logger.warn("A timestep was entered that has forced pacman103 " "to automatically slow the simulation down from " "real time by a factor of {}. To remove this " "automatic behaviour, please enter a " "timescaleFactor value in your .pacman.cfg".format( self._time_scale_factor)) if hostname is not None: self._hostname = hostname logger.warn("The machine name from PYNN setup is overriding the " "machine name defined in the spynnaker.cfg file") elif config.has_option("Machine", "machineName"): self._hostname = config.get("Machine", "machineName") else: raise Exception("A SpiNNaker machine must be specified in " "spynnaker.cfg.") use_virtual_board = config.getboolean("Machine", "virtual_board") if self._hostname == 'None' and not use_virtual_board: raise Exception("A SpiNNaker machine must be specified in " "spynnaker.cfg.")