def setUp(self): self.A = array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) self.B = array([[1e12,0],[0,1e-8]]) self.dummyOptions = helper.dummyOptions() self.dummyOptions.verbose=0; self.abs_tol=1e-15; self.rel_tol=1e-15;
def setUp(self): self.options = helper.dummyOptions() self.options.verbose = 2 #self.values = helper.dummyValues() self.abs_tol=1e-14 self.rel_tol=1e-14 pass
def setUp(self): set_check_condition(0) self.x = array([[0.5, 1.0, 0.5]]).T self.lb = array([]) self.ub = array([]) self.values = helper.dummyValues() self.options = helper.dummyOptions() self.info = dummyInfo() self.abs_tol=1e-8; self.rel_tol=1e-8;
def setUp(self): self.options = helper.dummyOptions() self.info = dummyInfo() self.x = array( [[0.500000000000000, 1.000000000000000, 0.500000000000000]]).T self.lm = array([[0, 0, 0, -0.333333332763891, -0.000000000249999]]).T #print "lm", self.lm self.lb = array([[-0.500000000000000, 0, -np.Inf]]).T self.ub = array([[np.Inf, np.Inf, np.Inf]]).T
def setUp(self): self.M = array(np.eye(3)) self.y = array([[-0.009783923878659, -0.0, 0.0]]).T self.s = array([[-0.503054026564966, -1.0, -0.184478531874161]]).T self.first = 1 self.info = dummyInfo() self.options = helper.dummyOptions() # set hessian approximation to bfgs self.options.hess_approx = 130 self.values = helper.dummyValues()
def setUp(self): self.info = dummyInfo() self.old_delta = 1 self.norms = 0 self.pc = 0 self.itype = None self.options = helper.dummyOptions() self.nb = 2 self.mi = 0 self.values = helper.dummyValues() self.constrained_pbl = 2 self.merit = 5.105551275463990
def setUp(self): self.X = array([[0, 1, 0], [0, 0, 1]]) self.fX = array([1, 100, 101]) self.y = array([[2, 4]]).T self.ciX = copy(self.X) self.ceX = copy(self.X) self.info = dummyInfo() self.options = helper.dummyOptions() self.values = helper.dummyValues() self.abs_tol = 1e-15 self.rel_tol = 1e-15
def test_sqpdfo_check_convex3(self): """ With a non symmetric matrix non convex """ C = array([[1,2,3],[4,5,6],[7,8,9]]) res = sqpdfo_check_convex_(C, helper.dummyOptions()) self.assertFalse(compare_array(C, res, self.abs_tol, self.rel_tol)) self.assertTrue(compare_array(res, res.T, self.abs_tol, self.rel_tol)) correctres=array([[0.000000000925233, 0.000000001000001, 1.88302358e+01]]) self.assertTrue(compare_array(correctres, np.sort(eig_(res)), 1e-8, 1e-8))
def setUp(self): self.simul = sqpdfo_evalfgh_ self.x = array([[-0.003054026564966, 0, 0.315521468125839]]).T self.null_step = 0 self.constrained_pbl = 2 self.lm = array( [[0, -0.999999999499998, 0, -0.000000000375002, 0.000000000083334]]).T self.M = array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) self.n = 3 self.me = 2 self.mi = 0 self.s = array( [[-0.503054026564966, -1.000000000000000, -0.184478531874161]]).T self.gx = array([[-0.009783923878659, 1.000000000000000, 0]]).T self.gci = array([]) self.gce = array( [[1.000000000000000, 0.999999999999999, 1.000000000000000], [1.000000000000000, 1.999999999999999, 3.000000000000000]]) self.info = dummyInfo() self.options = helper.dummyOptions() self.values = helper.dummyValues() self.fcmodel = array([[ 0.099563123926544, -0.013550429460611, 1.384968815034240, 0, 6.144976749236061 ], [ 0.312467441560872, 1.384968815034241, 1.384968815034240, 1.384968815034241, 0.000000000000006 ], [ -0.056489622187450, 1.384968815034241, 2.769937630068480, 4.154906445102721, 0.000000000000014 ]]) self.Y = array([[ -0.003054026564966, -0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000 ], [0, 1.000000000000000, 0, 1.000000000000000, 1.000000000000000], [ 0.315521468125839, 0.500000000000000, 0.500000000000000, -0.500000000000000, 0.500000000000000 ]]) self.fY = array([ 0.099563123926544, 1.500000000000000, 0.500000000000000, 1.500000000000000, 1.500000000000000 ]) self.ciY = array([]) self.ceY = array([[ 0.312467441560872, 1.000000000000000, 1.000000000000000, 1.000000000000000, 2.000000000000000 ], [ -0.056489622187450, 2.000000000000000, 1.000000000000000, 0, 3.000000000000000 ]]) self.sigma = 1 self.scale = array([[ 1.000000000000000, 0.722037918214987, 0.722037918214987, 0.722037918214987, 0.521338755340232 ]]).T self.shift_Y = 1 self.QZ = array([[1.000000000000000, 0, 0, 0, 0], [ 0, -0.437717028004984, -0.826365739060244, 0.329535025867438, -0.130115853870500 ], [ 0, 0.880814115424577, -0.315023389192614, 0.329471408091712, -0.127966204837389 ], [ 0, 0.162491294867564, -0.418566952172131, -0.884320607054428, -0.127966204837389 ], [ 0, 0.078529462977709, -0.206595343893201, -0.028849989870035, 0.974843149132506 ]]) self.RZ = array([[ 1.000000000000000, 1.000000000000000, 1.000000000000000, 1.000000000000000, 1.000000000000000 ], [ 0, 0.819739267991799, -0.132165180682231, 0.386491133279071, 0.503816009553305 ], [ 0, 0, -0.369537503265736, -0.294775124607443, -0.596996335387400 ], [0, 0, 0, 0.876403859762092, 0.237890849609900], [0, 0, 0, 0, -0.092396452142661]]) self.whichmodel = 0 self.ind_Y = array([4, 1, 2, 3, 0]) self.i_xbest = 4 self.m = 4 self.abs_tol = 1e-14 self.rel_tol = 1e-14
def setUp(self): self.options = helper.dummyOptions() self.values = helper.dummyValues() pass
def setUp(self): set_threshold(1.000000000000000e-08) set_test_prob(3) set_fileoutput(1) set_simul_not_initialized(1) set_check_condition(0) self.func = sqpdfo_evalfgh_ self.n = 3 self.nb = 2 self.mi = 0 self.me = 2 self.lm = array([[0.0], [0.0], [0.0], [-0.333333332763891], [-0.000000000249999]]) self.nitold = 0 self.nit = 0 self.i_xbest = 0 self.lb = array([[-0.500000000000000], [0.0], [-np.Inf]]) self.ub = array([[np.Inf], [np.Inf], [np.Inf]]) self.m = 3 self.X = array([[ 0.500000000000000, -0.500000000000000, 0.500000000000000, 0.500000000000000 ], [1.000000000000000, 1.000000000000000, 0.0, 1.000000000000000], [ 0.500000000000000, 0.500000000000000, 0.500000000000000, -0.500000000000000 ]]) self.fX = array([ 1.500000000000000, 1.500000000000000, 0.500000000000000, 1.500000000000000 ]) self.ciX = array([]) self.ceX = array([[2.0, 1.0, 1.0, 1.0], [3.0, 2.0, 1.0, 0.0]]) self.ind_Y = array([0, 1, 2, 3]) self.QZ = array([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) self.RZ = array([[1.0, 1.0, 1.0, 1.0], [0.0, -1.0, 0.0, 0.0], [0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, -1.0]]) self.delta = 1 self.cur_degree = 4 self.neval = 0 self.maxeval = 600 self.maxit = 600 self.fcmodel = array([[1.500000000000000, 0.0, 1.000000000000000, 0.0], [ 2.000000000000000, 1.000000000000000, 1.000000000000000, 1.000000000000000 ], [ 3.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000 ]]) self.gx = array([[0.0], [1.0], [0.0]]) self.normgx = 1.0 self.show_errg = 0 self.pquad = 10 self.pdiag = 7 self.plin = 4 self.stallfact = 2.220446049250313e-15 self.eps_rho = 1.000000000000000e-14 self.Deltamax = 100000.0 self.rep_degree = 4 self.epsilon = 1.000000000000000e-05 self.verbose = 2 self.eta1 = 1.000000000000000e-04 self.eta2 = 0.900000000000000 self.gamma1 = 0.010000000000000 self.gamma2 = 0.500000000000000 self.gamma3 = 2.0 self.interpol_TR = 1 self.factor_CV = 100 self.Lambda_XN = 1.000000000000000e-10 self.Lambda_CP = 1.200000000000000 self.factor_FPU = 1.0 self.factor_FPR = 10.0 self.Lambda_FP = 1.000000000000000e-10 self.criterion_S = 'distance' self.criterion_FP = 'distance' self.criterion_CP = 'standard' self.mu = 0.0 self.theta = 1.0 self.eps_TR = 1.000000000000000e-04 self.eps_L = 1.000000000000000e-03 self.lSolver = 1 self.stratLam = 1 self.eps_current = 1.000000000000000e-05 self.vstatus = array([[0], [0], [0]]) self.xstatus = array([[1], [1], [1], [1]]) self.sstatus = array([[1], [1], [1], [1]]) self.dstatus = array([[0], [0], [0], [0]]) self.ndummyY = 0 self.sspace_save = array([]) self.xspace_save = array([]) self.xfix = array([[0], [0], [0]]) self.fxmax = 1.000000000000000e+25 self.poised_model = 1 self.M = array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) self.kappa_ill = 1.000000000000000e+15 self.kappa_th = 2000 self.eps_bnd = 1.000000000000000e-06 self.poised = 1 self.Y_radius = 1 self.c = helper.dummyUnionStruct() self.c.free = 0 self.c.fixed = 1 self.c.alwaysfixed = 2 self.c.in_ = 1 self.c.out = 0 self.c.unused = 0 self.c.inY = 1 self.c.dummy = 1 self.c.nodummy = 0 self.level = 'toplevel' self.whichmodel = 0 self.hardcons = 0 self.noisy = 0 self.scaleX = 0 self.scalefacX = array([1, 1, 1]) self.CNTsin = 0 self.shrink_Delta = 1 self.scale = array([[1], [1], [1], [1]]) self.shift_Y = 1 self.info = dummyInfo() self.options = helper.dummyOptions() self.values = helper.dummyValues() self.abs_tol = 1e-5 self.rel_tol = 1e-5