コード例 #1
0
def spatial_neighbors(
    adata: AnnData,
    spatial_key: str = Key.obsm.spatial,
    coord_type: Optional[Union[str, CoordType]] = None,
    n_rings: int = 1,
    n_neigh: int = 6,
    delaunay: bool = False,
    radius: Optional[float] = None,
    transform: Optional[Union[str, Transform]] = None,
    key_added: Optional[str] = None,
) -> None:
    """
    Create a graph from spatial coordinates.

    Parameters
    ----------
    %(adata)s
    %(spatial_key)s
    coord_type
        Type of coordinate system. Valid options are:

            - `{c.VISIUM!r}` - Visium coordinates.
            - `{c.GENERIC!r}` - generic coordinates.

        If `None`, use `{c.VISIUM!r}` if ``spatial_key`` is present in :attr:`anndata.AnnData.obsm`,
        otherwise use `{c.GENERIC!r}`.
    n_rings
        Number of rings of neighbors for Visium data.
    n_neigh
        Number of neighborhoods to consider for non-Visium data.
    delaunay
        Whether to compute the graph from Delaunay triangulation.
    radius
        Radius of neighbors for non-Visium data.
    transform
        Type of adjacency matrix transform. Valid options are:

            - `{t.SPECTRAL.s!r}` - spectral transformation of the adjacency matrix.
            - `{t.COSINE.s!r}` - cosine transformation of the adjacency matrix.
            - `{t.NONE.v}` - no transformation of the adjacency matrix.

    key_added
        Key which controls where the results are saved.

    Returns
    -------
    Modifies the ``adata`` with the following keys:

        - :attr:`anndata.AnnData.obsp` ``['{{key_added}}_connectivities']`` - spatial connectivity matrix.
        - :attr:`anndata.AnnData.obsp` ``['{{key_added}}_distances']`` - spatial distances matrix.
        - :attr:`anndata.AnnData.uns`  ``['{{key_added}}']`` - spatial neighbors dictionary.
    """
    _assert_positive(n_rings, name="n_rings")
    _assert_positive(n_neigh, name="n_neigh")
    _assert_spatial_basis(adata, spatial_key)

    transform = Transform.NONE if transform is None else Transform(transform)
    if coord_type is None:
        coord_type = CoordType.VISIUM if Key.uns.spatial in adata.uns else CoordType.GENERIC
    else:
        coord_type = CoordType(coord_type)

    start = logg.info(
        f"Creating graph using `{coord_type}` coordinates and `{transform}` transform"
    )

    coords = adata.obsm[spatial_key]
    if coord_type == CoordType.VISIUM:
        if n_rings > 1:
            Adj: csr_matrix = _build_connectivity(coords,
                                                  6,
                                                  neigh_correct=True,
                                                  set_diag=True,
                                                  delaunay=delaunay,
                                                  return_distance=False)
            Res = Adj
            Walk = Adj
            for i in range(n_rings - 1):
                Walk = Walk @ Adj
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore", SparseEfficiencyWarning)
                    Walk[Res.nonzero()] = 0.0
                Walk.eliminate_zeros()
                Walk.data[:] = i + 2.0
                Res = Res + Walk
            Adj = Res
            Adj.setdiag(0.0)
            Adj.eliminate_zeros()

            Dst = Adj.copy()
            Adj.data[:] = 1.0
        else:
            Adj = _build_connectivity(coords,
                                      6,
                                      neigh_correct=True,
                                      delaunay=delaunay)
            Dst = None

    elif coord_type == CoordType.GENERIC:
        Adj, Dst = _build_connectivity(coords,
                                       n_neigh,
                                       radius,
                                       delaunay=delaunay,
                                       return_distance=True)
    else:
        raise NotImplementedError(coord_type)

    # check transform
    if transform == Transform.SPECTRAL:
        Adj = _transform_a_spectral(Adj)
    elif transform == Transform.COSINE:
        Adj = _transform_a_cosine(Adj)
    elif transform == Transform.NONE:
        pass
    else:
        raise NotImplementedError(
            f"Transform `{transform}` is not yet implemented.")

    neighs_key = Key.uns.spatial_neighs(key_added)
    conns_key = Key.obsp.spatial_conn(key_added)
    dists_key = Key.obsp.spatial_dist(key_added)

    neighbors_dict = {
        "connectivities_key": conns_key,
        "params": {
            "n_neighbors": n_neigh,
            "coord_type": coord_type.v,
            "radius": radius,
            "transform": transform.v
        },
        "distances_key": dists_key,
    }

    _save_data(adata, attr="obsp", key=conns_key, data=Adj)
    if Dst is not None:
        _save_data(adata, attr="obsp", key=dists_key, data=Dst, prefix=False)

    _save_data(adata,
               attr="uns",
               key=neighs_key,
               data=neighbors_dict,
               prefix=False,
               time=start)
コード例 #2
0
ファイル: _ppatterns.py プロジェクト: sophial05/squidpy
def co_occurrence(
    adata: AnnData,
    cluster_key: str,
    spatial_key: str = Key.obsm.spatial,
    n_steps: int = 50,
    copy: bool = False,
    n_splits: Optional[int] = None,
    n_jobs: Optional[int] = None,
    backend: str = "loky",
    show_progress_bar: bool = True,
) -> Optional[Tuple[np.ndarray, np.ndarray]]:
    """
    Compute co-occurrence probability of clusters.

    The co-occurrence is computed across ``n_steps`` distance thresholds in spatial dimensions.

    Parameters
    ----------
    %(adata)s
    %(cluster_key)s
    %(spatial_key)s
    n_steps
        Number of distance thresholds at which co-occurrence is computed.

    %(copy)s
    n_splits
        Number of splits in which to divide the spatial coordinates in
        :attr:`anndata.AnnData.obsm` ``['{spatial_key}']``.
    %(parallelize)s

    Returns
    -------
    If ``copy = True``, returns the co-occurrence probability and the distance thresholds intervals.

    Otherwise, modifies the ``adata`` with the following keys:

        - :attr:`anndata.AnnData.uns` ``['{cluster_key}_co_occurrence']['occ']`` - the co-occurrence probabilities
          across interval thresholds.
        - :attr:`anndata.AnnData.uns` ``['{cluster_key}_co_occurrence']['interval']`` - the distance thresholds
          computed at ``n_steps``.
    """
    _assert_categorical_obs(adata, key=cluster_key)
    _assert_spatial_basis(adata, key=spatial_key)

    spatial = adata.obsm[spatial_key].astype(fp)
    original_clust = adata.obs[cluster_key]

    # find minimum, second minimum and maximum for thresholding
    thres_min, thres_max = _find_min_max(spatial)

    # annotate cluster idx
    clust_map = {
        v: i
        for i, v in enumerate(original_clust.cat.categories.values)
    }
    labs = np.array([clust_map[c] for c in original_clust], dtype=ip)

    labs_unique = np.array(list(clust_map.values()), dtype=ip)

    # create intervals thresholds
    interval = np.linspace(thres_min, thres_max, num=n_steps, dtype=fp)

    n_obs = spatial.shape[0]
    if n_splits is None:
        size_arr = (n_obs**2 * 4) / 1024 / 1024  # calc expected mem usage
        if size_arr > 2_000:
            s = 1
            while 2_048 < (n_obs / s):
                s += 1
            n_splits = s
            logg.warning(
                f"`n_splits` was automatically set to: {n_splits}\n"
                f"preventing a NxN with N={n_obs} distance matrix to be created"
            )
        else:
            n_splits = 1
コード例 #3
0
ファイル: _ppatterns.py プロジェクト: sophial05/squidpy
def ripley_k(
    adata: AnnData,
    cluster_key: str,
    spatial_key: str = Key.obsm.spatial,
    mode: str = "ripley",
    support: int = 100,
    copy: bool = False,
) -> Optional[pd.DataFrame]:
    r"""
    Calculate `Ripley's K <https://en.wikipedia.org/wiki/Spatial_descriptive_statistics#Ripley's_K_and_L_functions>`_
    statistics for each cluster in the tissue coordinates.

    Parameters
    ----------
    %(adata)s
    %(cluster_key)s
    %(spatial_key)s
    mode
        Keyword which indicates the method for edge effects correction.
        See :class:`astropy.stats.RipleysKEstimator` for valid options.
    support
        Number of points where Ripley's K is evaluated between a fixed radii with :math:`min=0`,
        :math:`max=\sqrt{{area \over 2}}`.
    %(copy)s

    Returns
    -------
    If ``copy = True``, returns a :class:`pandas.DataFrame` with the following keys:

        - `'ripley_k'` - the Ripley's K statistic.
        - `'distance'` - set of distances where the estimator was evaluated.

    Otherwise, modifies the ``adata`` with the following key:

        - :attr:`anndata.AnnData.uns` ``['{{cluster_key}}_ripley_k']`` - the above mentioned dataframe.
    """  # noqa: D205, D400
    try:
        # from pointpats import ripley, hull
        from astropy.stats import RipleysKEstimator
    except ImportError:
        raise ImportError(
            "Please install `astropy` as `pip install astropy`.") from None

    _assert_spatial_basis(adata, key=spatial_key)
    coord = adata.obsm[spatial_key]

    # set coordinates
    y_min = int(coord[:, 1].min())
    y_max = int(coord[:, 1].max())
    x_min = int(coord[:, 0].min())
    x_max = int(coord[:, 0].max())
    area = int((x_max - x_min) * (y_max - y_min))
    r = np.linspace(0, (area / 2)**0.5, support)

    # set estimator
    Kest = RipleysKEstimator(area=area,
                             x_max=x_max,
                             y_max=y_max,
                             x_min=x_min,
                             y_min=y_min)
    df_lst = []

    # TODO: how long does this take (i.e. does it make sense to measure the elapse time?)
    logg.info("Calculating Ripley's K")
    for c in adata.obs[cluster_key].unique():
        idx = adata.obs[cluster_key].values == c
        coord_sub = coord[idx, :]
        est = Kest(data=coord_sub, radii=r, mode=mode)
        df_est = pd.DataFrame(np.stack([est, r], axis=1))
        df_est.columns = ["ripley_k", "distance"]
        df_est[cluster_key] = c
        df_lst.append(df_est)

    df = pd.concat(df_lst, axis=0)
    # filter by min max dist
    minmax_dist = df.groupby(cluster_key)["ripley_k"].max().min()
    df = df[df.ripley_k < minmax_dist].copy()

    if copy:
        return df

    adata.uns[f"ripley_k_{cluster_key}"] = df
    _save_data(adata, attr="uns", key=Key.uns.ripley_k(cluster_key), data=df)
コード例 #4
0
ファイル: _container.py プロジェクト: sophial05/squidpy
    def generate_spot_crops(
        self,
        adata: AnnData,
        library_id: Optional[str] = None,
        spatial_key: str = Key.obsm.spatial,
        spot_scale: float = 1.0,
        obs_names: Optional[Iterable[Any]] = None,
        as_array: Union[str, bool] = False,
        return_obs: bool = False,
        **kwargs: Any,
    ) -> Union[Iterator["ImageContainer"], Iterator[np.ndarray],
               Iterator[Tuple[np.ndarray, ...]], Iterator[Dict[str,
                                                               np.ndarray]], ]:
        """
        Iterate over :attr:`adata.obs_names` and extract crops.

        Implemented for 10X spatial datasets.

        Parameters
        ----------
        %(adata)s
        library_id
            Key in :attr:`anndata.AnnData.uns` ``['{spatial_key}']`` used to get the spot diameter.
        %(spatial_key)s
        spot_scale
            Scaling factor for the spot diameter. Larger values mean more context.
        obs_names
            Observations from :attr:`adata.obs_names` for which to generate the crops. If `None`, all names are used.
        %(as_array)s
        return_obs
            Whether to also yield names from ``obs_names``.
        kwargs
            Keyword arguments for :meth:`crop_center`.

        Yields
        ------
        If ``return_obs = True``, yields a :class:`tuple` ``(crop, obs_name)``. Otherwise, yields just the crops.
        The type of the crops depends on ``as_array``.
        """
        self._assert_not_empty()
        _assert_positive(spot_scale, name="scale")
        _assert_spatial_basis(adata, spatial_key)
        library_id = Key.uns.library_id(adata,
                                        spatial_key=spatial_key,
                                        library_id=library_id)

        if obs_names is None:
            obs_names = adata.obs_names
        obs_names = _assert_non_empty_sequence(obs_names, name="observations")

        adata = adata[obs_names, :]
        spatial = adata.obsm[spatial_key][:, :2]

        diameter = adata.uns[spatial_key][library_id]["scalefactors"][
            "spot_diameter_fullres"]
        radius = int(round(diameter // 2 * spot_scale))

        for i, obs in enumerate(adata.obs_names):
            crop = self.crop_center(y=spatial[i][1],
                                    x=spatial[i][0],
                                    radius=radius,
                                    **kwargs)
            crop.data.attrs[Key.img.obs] = obs
            crop = crop._maybe_as_array(as_array)

            yield (crop, obs) if return_obs else crop