コード例 #1
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, labels) in enumerate(dev_loader):

            #print(img_id[0], encoder.verb2_role_dict[encoder.verb_list[verb[0]]])

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                labels = torch.autograd.Variable(labels)

            role_predict = model(img)

            top1.add_point_noun_single_role(role_predict, labels)
            top5.add_point_noun_single_role(role_predict, labels)

            del role_predict, img, labels
            #break

    return top1, top5, 0
コード例 #2
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file = False):
    model.eval()

    print ('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():
        t1 = time.time()
        for i, (img_id, img, verb, labels) in enumerate(dev_loader):

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict = model(img, verb)

            if write_to_file:
                top1.add_point_noun_log(img_id, verb, role_predict, labels)
                top5.add_point_noun_log(img_id, verb, role_predict, labels)
            else:
                top1.add_point_noun(verb, role_predict, labels)
                top5.add_point_noun(verb, role_predict, labels)

            del role_predict, img, verb, labels
            #break
        print('eval, time: %.2f' % ( time.time()-t1))
    return top1, top5, 0
コード例 #3
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, verb_img_feat, verb,
                labels) in enumerate(dev_loader):

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb_img_feat = torch.autograd.Variable(verb_img_feat.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb_img_feat = torch.autograd.Variable(verb_img_feat)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            verb_predict, role_pred_topk = model.forward_eval(
                img, verb_img_feat)

            top1.add_point_eval5_log_sorted(img_id, verb_predict, verb,
                                            role_pred_topk, labels)
            top5.add_point_eval5_log_sorted(img_id, verb_predict, verb,
                                            role_pred_topk, labels)

            del verb_predict, role_pred_topk, img, verb, labels
            #break

    return top1, top5, 0
コード例 #4
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file = False):
    model.eval()

    print ('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        mx = len(dev_loader)
        for i, (img_id, img, verb, labels) in enumerate(dev_loader):
            print("{}/{} batches\r".format(i+1,mx)),

            #print(img_id[0], encoder.verb2_role_dict[encoder.verb_list[verb[0]]])

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                labels = torch.autograd.Variable(labels.cuda())
                verb = torch.autograd.Variable(verb.cuda())
            else:
                img = torch.autograd.Variable(img)
                labels = torch.autograd.Variable(labels)
                verb = torch.autograd.Variable(verb)

            verb_predict, role_predict = model(img)

            top1.add_point_eval5_log_sorted(img_id, verb_predict, verb, role_predict, labels)
            top5.add_point_eval5_log_sorted(img_id, verb_predict, verb, role_predict, labels)

            del verb_predict, img, verb
            #break

    return top1, top5, 0
コード例 #5
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, verb_pred, verb) in enumerate(dev_loader):

            #print(img_id[0], encoder.verb2_role_dict[encoder.verb_list[verb[0]]])

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb_pred = torch.autograd.Variable(verb_pred.cuda())
                verb = torch.autograd.Variable(verb.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb_pred = torch.autograd.Variable(verb_pred)
                verb = torch.autograd.Variable(verb)

            verb_predict = model(img, verb_pred)

            top1.add_point_verb_only_eval(img_id, verb_predict, verb)
            top5.add_point_verb_only_eval(img_id, verb_predict, verb)

            del verb_predict, img, verb
            #break

    return top1, top5, 0
コード例 #6
0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file = False):
    model.eval()

    print ('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():
        mx = len(dev_loader)
        for i, (img_id, img, verb, labels, verb_role_impact) in enumerate(dev_loader):
            #print("{}/{} batches\r".format(i+1,mx))
            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
                verb_role_impact = torch.autograd.Variable(verb_role_impact.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)
                verb_role_impact = torch.autograd.Variable(verb_role_impact)

            role_predict = model(img, verb, verb_role_impact)

            if write_to_file:
                top1.add_point_noun_log(img_id, verb, role_predict, labels)
                top5.add_point_noun_log(img_id, verb, role_predict, labels)
            else:
                top1.add_point_noun(verb, role_predict, labels)
                top5.add_point_noun(verb, role_predict, labels)

            del role_predict, img, verb, labels
            #break

    return top1, top5, 0
コード例 #7
0
def eval_output(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    #img_id_list = ['feeding_266.jpg', 'packing_252.jpg','igniting_123.jpg','assembling_263.jpg', 'lathering_25.jpg', 'sharpening_232.jpg', 'nipping_51.jpg']
    verb_name = 'sharpening'

    tot_score = []

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, verb, labels) in enumerate(dev_loader):

            #print(img_id[0], encoder.verb2_role_dict[encoder.verb_list[verb[0]]])
            show_att = False
            if verb_name in img_id[0]:
                print('handling ', img_id[0])
                show_att = True
            else:
                continue

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict, mean_score = model.forward_vis(img, verb, show_att)

            tot_score.append(mean_score)

            if write_to_file:
                top1.add_point_noun_log(img_id, verb, role_predict, labels)
                top5.add_point_noun_log(img_id, verb, role_predict, labels)
            else:
                top1.add_point_noun(verb, role_predict, labels)
                top5.add_point_noun(verb, role_predict, labels)

            del role_predict, img, verb, labels
            #break

    a = torch.sum(torch.stack(tot_score).squeeze(), 0)
    print(a)
    #print(tot_score)

    return top1, top5, 0
コード例 #8
0
def eval_output(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    img_id_list = [
        'vaulting_90.jpg', 'dialing_213.jpg', 'stirring_68.jpg',
        'ailing_175.jpg', 'unloading_97.jpg', 'clenching_115.jpg',
        'imitating_44.jpg', 'assembling_230.jpg', 'wrapping_101.jpg',
        'descending_105.jpg', 'stuffing_202.jpg', 'dining_67.jpg',
        'tattooing_72.jpg', 'fetching_83.jpg', 'giving_46.jpg',
        'striking_202.jpg', 'tickling_86.jpg', 'brewing_110.jpg',
        'taping_142.jpg', 'fording_40.jpg'
    ]

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, verb, labels) in enumerate(dev_loader):

            #print(img_id[0], encoder.verb2_role_dict[encoder.verb_list[verb[0]]])
            show_att = False
            if img_id[0] in img_id_list:
                print('handling ', img_id[0])
                show_att = True
            else:
                continue

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict = model.forward_vis(img, verb, show_att)

            if write_to_file:
                top1.add_point_noun_log(img_id, verb, role_predict, labels)
                top5.add_point_noun_log(img_id, verb, role_predict, labels)
            else:
                top1.add_point_noun(verb, role_predict, labels)
                top5.add_point_noun(verb, role_predict, labels)

            del role_predict, img, verb, labels
            #break

    return top1, top5, 0
コード例 #9
0
def eval_output(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    img_id_list = ['pawing_37.jpg']

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, verb, labels) in enumerate(dev_loader):

            show_att = False
            if img_id[0] in img_id_list:
                print('handling ', img_id[0])
                show_att = True
            else:
                continue

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict = model.forward_vis(img, verb, show_att)

            if write_to_file:
                top1.add_point_noun_log(img_id, verb, role_predict, labels)
                top5.add_point_noun_log(img_id, verb, role_predict, labels)
            else:
                top1.add_point_noun(verb, role_predict, labels)
                top5.add_point_noun(verb, role_predict, labels)

            del role_predict, img, verb, labels
            #break

    return top1, top5, 0
def eval(model, dev_loader, encoder, gpu_mode, write_to_file=False):
    model.eval()

    print('evaluating model...')
    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3, write_to_file)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)
    with torch.no_grad():

        for i, (img_id, img, img_feat, verb, labels) in enumerate(dev_loader):

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                img_feat = torch.autograd.Variable(img_feat.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                img_feat = torch.autograd.Variable(img_feat)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict, verb_pred, verb_hidden_rep = model(
                img, img_feat, verb)

            if write_to_file:
                top1.add_point_both_wrong(verb_pred, verb, role_predict,
                                          labels)
                top5.add_point_both_wrong(verb_pred, verb, role_predict,
                                          labels)
            else:
                top1.add_point_both_wrong(verb_pred, verb, role_predict,
                                          labels)
                top5.add_point_both_wrong(verb_pred, verb, role_predict,
                                          labels)

            del role_predict, img, verb, labels
            #break

    return top1, top5, 0
コード例 #11
0
def train(model, train_loader, dev_loader, optimizer, scheduler, max_epoch, model_dir, encoder, gpu_mode, clip_norm, model_name, model_saving_name, eval_frequency=4000):
    model.train()
    train_loss = 0
    total_steps = 0
    print_freq = 400
    dev_score_list = []

    if gpu_mode >= 0 :
        ngpus = 2
        device_array = [i for i in range(0,ngpus)]

        pmodel = torch.nn.DataParallel(model, device_ids=device_array)
    else:
        pmodel = model
    #pmodel = model

    all = count_parameters(model)
    cnn = count_parameters(model.convnet)

    print('model parameters - all, cnn, base ', all, cnn)

    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)

    for epoch in range(max_epoch):
        t = time.time()
        for i, (_, img, verb, labels) in enumerate(train_loader):
            total_steps += 1

            #min_t = time.time()

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb = torch.autograd.Variable(verb.cuda())
                labels = torch.autograd.Variable(labels.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb = torch.autograd.Variable(verb)
                labels = torch.autograd.Variable(labels)

            role_predict = pmodel(img, verb)
            loss = model.calculate_loss(verb, role_predict, labels)

            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip_norm)

            optimizer.step()
            optimizer.zero_grad()

            train_loss += loss.item()

            top1.add_point_noun(verb, role_predict, labels)
            top5.add_point_noun(verb, role_predict, labels)

            #print('after minibatch ', i, time.time() - min_t)


            if total_steps % print_freq == 0:
                top1_a = top1.get_average_results_nouns()
                top5_a = top5.get_average_results_nouns()
                print ("{},{},{}, {} , {}, loss = {:.2f}, avg loss = {:.2f}"
                       .format(total_steps-1,epoch,i, utils.format_dict(top1_a, "{:.2f}", "1-"),
                               utils.format_dict(top5_a,"{:.2f}","5-"), loss.item(),
                               train_loss / ((total_steps-1)%eval_frequency) ))


            if total_steps % eval_frequency == 0:
                top1, top5, val_loss = eval(model, dev_loader, encoder, gpu_mode)
                model.train()

                top1_avg = top1.get_average_results_nouns()
                top5_avg = top5.get_average_results_nouns()

                avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                            top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
                avg_score /= 8

                print ('Dev {} average :{:.2f} {} {}'.format(total_steps-1, avg_score*100,
                                                             utils.format_dict(top1_avg,'{:.2f}', '1-'),
                                                             utils.format_dict(top5_avg, '{:.2f}', '5-')))
                dev_score_list.append(avg_score)
                max_score = max(dev_score_list)

                if max_score == dev_score_list[-1]:
                    torch.save(model.state_dict(), model_dir + "/{}_{}.model".format( model_name, model_saving_name))
                    print ('New best model saved! {0}'.format(max_score))

                print('current train loss', train_loss)
                train_loss = 0
                top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3)
                top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)

            del role_predict, loss, img, verb, labels

        print('epoch %d, time: %.2f' % (epoch, time.time()-t))
        print('Epoch ', epoch, ' completed!')
        scheduler.step()
コード例 #12
0
def train(model,
          train_loader,
          dev_loader,
          optimizer,
          scheduler,
          max_epoch,
          model_dir,
          encoder,
          gpu_mode,
          clip_norm,
          model_name,
          model_saving_name,
          eval_frequency=4000):
    model.train()
    train_loss = 0
    total_steps = 0
    print_freq = 400
    dev_score_list = []
    '''if gpu_mode >= 0 :
        ngpus = 2
        device_array = [i for i in range(0,ngpus)]

        pmodel = torch.nn.DataParallel(model, device_ids=device_array)
    else:
        pmodel = model'''
    pmodel = model

    top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3)
    top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)

    for epoch in range(max_epoch):

        for i, (img_id, img, verb_pred, verb) in enumerate(train_loader):
            total_steps += 1

            if gpu_mode >= 0:
                img = torch.autograd.Variable(img.cuda())
                verb_pred = torch.autograd.Variable(verb_pred.cuda())
                verb = torch.autograd.Variable(verb.cuda())
            else:
                img = torch.autograd.Variable(img)
                verb_pred = torch.autograd.Variable(verb_pred)
                verb = torch.autograd.Variable(verb)

            verb_predict = pmodel(img, verb_pred)
            loss = model.calculate_verb_loss(verb_predict, verb)

            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), clip_norm)

            optimizer.step()
            optimizer.zero_grad()

            train_loss += loss.item()

            top1.add_point_verb_only_eval(img_id, verb_predict, verb)
            top5.add_point_verb_only_eval(img_id, verb_predict, verb)

            if total_steps % print_freq == 0:
                top1_a = top1.get_average_results()
                top5_a = top5.get_average_results()
                print("{},{},{}, {} , {}, loss = {:.2f}, avg loss = {:.2f}".
                      format(total_steps - 1, epoch, i,
                             utils.format_dict(top1_a, "{:.2f}", "1-"),
                             utils.format_dict(top5_a, "{:.2f}", "5-"),
                             loss.item(), train_loss /
                             ((total_steps - 1) % eval_frequency)))

            if total_steps % eval_frequency == 0:
                top1, top5, val_loss = eval(model, dev_loader, encoder,
                                            gpu_mode)
                model.train()

                top1_avg = top1.get_average_results()
                top5_avg = top5.get_average_results()

                avg_score = top1_avg["verb"] + top1_avg["value"] + top1_avg["value-all"] + top5_avg["verb"] + \
                            top5_avg["value"] + top5_avg["value-all"] + top5_avg["value*"] + top5_avg["value-all*"]
                avg_score /= 8

                print('Dev {} average :{:.2f} {} {}'.format(
                    total_steps - 1, avg_score * 100,
                    utils.format_dict(top1_avg, '{:.2f}', '1-'),
                    utils.format_dict(top5_avg, '{:.2f}', '5-')))
                dev_score_list.append(avg_score)
                max_score = max(dev_score_list)

                if max_score == dev_score_list[-1]:
                    torch.save(
                        model.state_dict(), model_dir +
                        "/{}_{}.model".format(model_name, model_saving_name))
                    print('New best model saved! {0}'.format(max_score))

                print('current train loss', train_loss)
                train_loss = 0
                top1 = imsitu_scorer.imsitu_scorer(encoder, 1, 3)
                top5 = imsitu_scorer.imsitu_scorer(encoder, 5, 3)

            del verb_predict, loss, img, verb
        print('Epoch ', epoch, ' completed!')
        scheduler.step()