def test_should_return_same_df_when_column_not_exists(self): transformation = Transformation(self.test_data) transformation.drop(["xpto"]) transformed_df = transformation.dataframe.collect() self.assertEqual(transformed_df, self.test_data.collect())
def test_should_have_same_df_when_column_list_is_empty(self): transformation = Transformation(self.test_data) transformation.drop([]) transformed_df = transformation.dataframe.collect() self.assertEqual(transformed_df, self.test_data.collect())
def test_should_remove_one_column_from_dataframe(self): transformation = Transformation(self.test_data) transformation.drop(["alert"]) current_result = transformation.dataframe.columns expected_result = self.spark.createDataFrame([ (1704567252, "California", 0.82, "Automatic", [-116.8, 33.3333333, 12.04]), (1391707828, "Alaska", 1.1, None, [-148.942, 64.9081, 10.6]), (1435498694, "Chile", 4.9, "Reviewed", [-70.6202, -21.4265, 52.24 ]), (1609879110, "Hawaii", 2.0099, "Automatic", [-155.429000854492, 19.2180004119873, 33.2999992370605]), (1224994646, "Indonesia", 4.8, "Reviewed", [126.419, 0.2661, 10]), (1801059964, "Nevada", 0.5, "Automatic", [-116.242, 36.7564, 0.8]), (1262739669, "Arkansas", 1.9, "Reviewed", [-91.4295, 35.863, 16.41]), (1890118874, "Montana", 1.33, "Reviewed", [-110.434, 44.4718333, 2.21]), (1025727100, "Oklahoma", 1.58, "Reviewed", [-98.53233333, 36.57083333, 6.31]), (1834567116, "Idaho", 2.6, "Reviewed", [-115.186, 44.2666, 10]) ], ["date", "place", "mag", "status", "coordinates"]).columns self.assertEqual(current_result, expected_result)
def test_should_remove_two_columns_from_dataframe(self): transformation = Transformation(self.test_data) transformation.drop(["coordinates", "alert"]) current_result = transformation.dataframe.columns expected_result = self.spark.createDataFrame( [(1704567252, "California", 0.82, "Automatic"), (1391707828, "Alaska", 1.1, None), (1435498694, "Chile", 4.9, "Reviewed"), (1609879110, "Hawaii", 2.0099, "Automatic"), (1224994646, "Indonesia", 4.8, "Reviewed"), (1801059964, "Nevada", 0.5, "Automatic"), (1262739669, "Arkansas", 1.9, "Reviewed"), (1890118874, "Montana", 1.33, "Reviewed"), (1025727100, "Oklahoma", 1.58, "Reviewed"), (1834567116, "Idaho", 2.6, "Reviewed")], ["date", "place", "mag", "status"]).columns self.assertEqual(current_result, expected_result)
def test_should_return_transformed_data_using_all_pipeline_components( self, mock_get_data): self.create_tmp_folder() fake_api_input = ApiInput(self.FAKE_URL) mock_get_data.return_value = self.FAKE_INPUT_DATA extraction_process = Extraction(fake_api_input) extraction_process.extract() raw_data = extraction_process.data raw_df = self.spark.createDataFrame( raw_data, ["date", "place", "mag", "status", "coordinates", "alert"]) transformation_process = Transformation(raw_df) transformation_process.drop(["alert"]) transformation_process.rename({"mag": "magnitude", "place": "city"}) transformation_process.replace_null_values({"status": "Automatic"}) transformation_process.lowercase(["status"]) transformation_process.convert_data_type({"date": IntegerType()}) transformation_process.split_content( "coordinates", ["longitude", "latitude", "depth"]) transformed_df = transformation_process.dataframe csv_storage = CsvStorage(self.OUTPUT_FILEPATH) loading_process = Loading(csv_storage) loading_process.load(transformed_df) current_result = self.spark \ .read \ .csv(self.OUTPUT_FILEPATH, header=True, inferSchema=True) \ .collect() expected_result = self.spark \ .createDataFrame(self.FAKE_EXPECTED_DATA, ["date", "city", "magnitude", "status", "longitude", "latitude", "depth"]) \ .collect() self.assertEqual(current_result, expected_result) self.delete_test_file()