コード例 #1
0
def plot_genetic_algorithm_time():
    timer = Timer()
    experiments = []
    time = []
    total_time = 0
    # Build Neural Network
    genetic_algorithm = GeneticFixedTopology(100, 1000)

    # 20 runs of 1000 generations each
    for i in range(20):
        experiments.append(i)
        timer.start()
        genetic_algorithm.run()
        this_time = timer.stop()
        time.append(this_time)
        genetic_algorithm = GeneticFixedTopology(100, 1000)
        total_time += this_time
    mean_time = total_time / len(experiments)

    # Plot
    plt.figure()
    plt.title("Time Taken in 1000 Generations", fontsize=20)
    plt.xlabel('experimento')
    plt.ylabel('tiempo (segundos)')
    plt.scatter(experiments, time, color='blue')
    plt.axhline(y=mean_time, color='r', linestyle='-')
    plt.show()
コード例 #2
0
ファイル: train_mlp.py プロジェクト: kk-leung/xgb-embedding
    def __init__(self, args, num_input, mode='both', timer: Timer = None):
        self.args = args
        self.timer = Timer() if timer is None else timer

        if args.all_trees and False:
            self.embedding_size_to_mlp = args.embedding_size  # * args.num_trees_for_embedd
        else:
            self.embedding_size_to_mlp = args.embedding_size * args.num_trees_for_embedding
        if mode is 'raw_only':
            num_features = num_input
        elif mode is 'emb_only':
            num_features = self.embedding_size_to_mlp
            # num_features = args.embedding_size
        elif mode is 'both':
            num_features = self.embedding_size_to_mlp + num_input
            # num_features = args.embedding_size + num_input
        else:
            raise Exception(
                "unidentified mode. possible={'raw_only', 'emb_only', 'both'}")

        if args.load_mlp:
            model_name = "{:s}_{:d}_{:d}.chkpt".format(
                self.args.mlp_model_name, self.args.max_depth,
                self.args.num_trees_for_embedding)
            self.model = torch.load(model_name)['model']
        else:
            self.model = MLP(args, num_features)
        self.mode = mode
        self.loss = torch.nn.BCEWithLogitsLoss(reduction='mean')
        total_params = sum(x.data.nelement() for x in self.model.parameters())
        print("Model total number of parameters: {}".format(total_params))
コード例 #3
0
class XGBTreeParser:
    def __init__(self, booster, num_input, timer: Timer = None):
        self.timer = Timer() if timer is None else timer
        dump = booster.get_dump(with_stats=True)
        self.trees = [DecisionTree(tree, num_input) for tree in dump]
        self.leaf_to_index = [tree.leaf_to_index for tree in self.trees]
        self.num_nodes = [
            len(leaf_to_index) for leaf_to_index in self.leaf_to_index
        ]
        self.max_length = max(self.num_nodes)
        self.num_trees = len(self.trees)
        self.timer.toc("init done. Max length = " + str(self.max_length))

    def _parse_predict_leaf(self, pred_leaves):
        def func(leaf_index, leaf):
            return self.leaf_to_index[leaf_index][leaf]

        a = np.vectorize(func)
        indexes = np.arange(0, self.num_trees).reshape(
            1, -1)  # .repeat(len(pred_leaves), 0)
        return a(indexes, pred_leaves)

    # Input pred_leaves. shape [num_sample, num trees]
    def get_one_hot_version(self, pred_leaves):
        transpose = np.transpose(self._parse_predict_leaf(pred_leaves))
        return np.concatenate([
            np.eye(self.num_nodes[i])[tree] for i, tree in enumerate(transpose)
        ],
                              axis=1)
コード例 #4
0
def plot_time_vs_epochs(train_data, test_data):
    timer = Timer()
    number_epochs = []
    time = []
    total_time = 0
    # Build Neural Network
    neural_network = build_network()

    # 200 runs of 100 epochs each
    for i in range(100):
        number_epochs.append(i)
        timer.start()
        for j in range(1000):
            for data in test_data:
                neural_network.feed(data)
        this_time = timer.stop()
        time.append(this_time)
        total_time += this_time
    mean_time = total_time / len(number_epochs)

    # Plot
    plt.figure()
    plt.title("Time Taken in 1000 Epochs", fontsize=20)
    plt.xlabel('Number of Experiment')
    plt.ylabel('Time (seconds)')
    plt.scatter(number_epochs, time, color='blue')
    plt.axhline(y=mean_time, color='r', linestyle='-')
    plt.show()
コード例 #5
0
 def __init__(self, booster, num_input, timer: Timer = None):
     self.timer = Timer() if timer is None else timer
     dump = booster.get_dump(with_stats=True)
     self.trees = [DecisionTree(tree, num_input) for tree in dump]
     self.leaf_to_index = [tree.leaf_to_index for tree in self.trees]
     self.num_nodes = [
         len(leaf_to_index) for leaf_to_index in self.leaf_to_index
     ]
     self.max_length = max(self.num_nodes)
     self.num_trees = len(self.trees)
     self.timer.toc("init done. Max length = " + str(self.max_length))
コード例 #6
0
ファイル: Noise.py プロジェクト: lznidarsic/sir
 def __correlateBlock(self,w):
     N = len(w[0,:]);
     n = len(w[:,0]);
     wout = zeros((n,N));
     T = Timer("Convolving signal with Block..",0,N)
     for j in range(0,N):
         block = self.__block(self._t,self._t[j],self._pa);
         for i in range(0,n):
             
             wout[i,j] = sum(block*w[i,:]);
         T.looptime(j)
     return wout;
コード例 #7
0
ファイル: Kernel.py プロジェクト: MatLock/OSProject
def main1():
    instruction1 = BasicInstruction()
    instruction3 = Priority_Instruction()
    logger = Logger("../resource/log.txt")
    program = Program('a')
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    programb = Program('b')
    programb.addInstruction(instruction3)
    programc = Program('c')
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    timer = Timer(2)
    memory = Memory()
    memory.buildMemory(9)
    frame1 = Frame(memory,0,9)
    mmu = MMU()
    mmu.addEmptyFrame(frame1)
    cpu = CPU(None,mmu,None,timer,logger)
    scheduler = Scheduler(PFIFO())
    ioqueue = IOQueue(scheduler,logger)
    disk = Disk(None)
    kernel = Kernel(cpu,ioqueue,scheduler,mmu,disk,logger)
    disk.setKernel(kernel)
    disk.save(program)
    disk.save(programb)
    disk.save(programc)
    cpu.setKernel(kernel)
    kernel.executeProgram('a')   
コード例 #8
0
class Health:
    def __init__(self, health, cooldown_seconds):
        from src.Timer import Timer
        self.health = health
        self.cooldown_seconds = cooldown_seconds
        self.time_elapsed_since_hit = self.cooldown_seconds
        self.timer = Timer()

    def deal_damage(self, damage):
        t = self.timer.get_time()
        if t > self.cooldown_seconds * 1000:
            self.health = self.health - damage
            if self.health < 0:
                self.health = 0
            self.time_elapsed_since_hit = 0
            self.timer.reset()
コード例 #9
0
ファイル: Kernel.py プロジェクト: MatLock/OSProject
def main0():
    instruction1 = BasicInstruction()
    instruction2 = IO_Instruction()
    instruction3 = Priority_Instruction()
    program = Program('a')
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    programb = Program('b')
    programb.addInstruction(instruction3)
    programc = Program('c')
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    timer = Timer(2)
    memory = Memory()
    memory.buildMemory(9)
    frame1 = Frame(memory,0,9)
    mmu = MMU()
    mmu.addEmptyFrame(frame1)
    cpu = CPU(None,mmu,None,timer)
    scheduler = Scheduler(PFIFO())
    ioqueue = IOQueue(scheduler)
    disk = Disk(None)
    kernel = Kernel(cpu,ioqueue,scheduler,mmu,disk)
    disk.setKernel(kernel)
    cpu.setKernel(kernel)
    kernel.saveProgram(program)
    kernel.saveProgram(programb)
    kernel.saveProgram(programc)
    kernel.start()
    cpu.start()
    ioqueue.start()
コード例 #10
0
    def __init__(self, player):
        from src.Timer import Timer
        from src.Sprite import Sprite
        self.valid_blink_points = []
        self.dot_spr = Sprite(ImageEnum.BLINK_DOT)
        self.dot_spr.bounds = (0, 0, 4, 4)
        self.can_blink = False
        self.player = player

        self.blink_frames = 3
        self.is_blinking = False
        self.frame_displacement = (None, None)
        self.frames_passed = None
        self.timer = Timer()
        self.cooldown_ms = 2500
        self.cooldown_passed = False

        self.state = BlinkState.CAN_BLINK
コード例 #11
0
def DEM(M,x0,u,y,p,Pw,Pz,alpha_x,alpha_th,embed=0,gembed=1,maxit=1000,numerical=True,mfts=False,tol=1e-6,conit=100):
    
    # Allocate memory
    J  = zeros((    1,       maxit));
    th = zeros((M.nth,       maxit));
    th[:,0] = M.th;
    
    # Set-up loop
    i = 0;
    j = 0;
    T = Timer('Dynamic Expectation Maximization',i,maxit-1,maxit-1);
    
    # Run loop
    while i < maxit-1 and j < conit:
        
        # Update cost, covariance and parameter estimates
        if numerical:
            J[:,i],th[:,i+1] = NDEMstep(M,x0,u,y,p,Pw,Pz,alpha_x,alpha_th,embed,mfts)[0:2];
        else:
            J[:,i],th[:,i+1] = ADEMstep(M,x0,u,y,p,Pw,Pz,alpha_x,alpha_th,embed,gembed,mfts)[0:2]
        M.th = th[:,i+1];
    
        # Stopping criterion: J < <tol> in last <conit> iterations
        if j == 0:
            if abs(J[:,i]-J[:,i-1]) < tol:
                j = 1;
        else:
            if abs(J[:,i]-J[:,i-1]) < tol:
                j +=1;
            else:
                j = 0;
        i +=1;
        T.looptime(i);
    
    # Get final hidden state and output estimations
    xp,xu,yp,yu = FEF(M,x0,u,y,p,alpha_x,embed,mfts);
            
    # If converged before maxit, then fill remainer of matrices with last value
    for j in range(i-1,maxit):
        J[:,j]   = J[:,i-1];
        th[:,j]  = th[:,i];
    
    dat = pedata('DEM',M,J,[],[],[],th,xp,xu,yp,yu);
    return dat;
コード例 #12
0
ファイル: Noise.py プロジェクト: lznidarsic/sir
 def __correlateGaussian(self,w):
     N = len(w[0,:]);
     n = len(w[:,0]);
     wout = zeros((n,N));
     tol = 1e-6;
     # find for which coordinate the gaussian < tol
     gaus = self.__gaussian(self._t,0,self._pa);
     k=0
     while gaus[k] > tol:
         k+=1;
     gaus = zeros(2*k);
     T = Timer("Convolving signal with Gaussian..",0,N)
     for j in range(0,N):
         kmin = max([0,j-k]);
         kmax = min([N-1,j+k]);
         if j <= k or j >= N-k:
             gaus = self.__gaussian(self._t[kmin:kmax],self._t[j],self._pa);
         else:
             gaus[:] = self.__gaussian(self._t[kmin:kmax],self._t[j],self._pa);
         for i in range(0,n):
             wout[i,j] = sum(gaus*w[i,kmin:kmax]);
         T.looptime(j)
     return wout;
コード例 #13
0
    def __init__(self):
        print("Bienvenue à BruteForceLogin.py!")

        args_dictionary = self.get_args()
        message_administrator = MessageAdministrator()
        timer = Timer()
        form_name_finder = FormNameFinder()
        dictionary_reader = DictionaryReader(args_dictionary["dict"])
        browser_service = BrowserService(args_dictionary["url"])
        brute_force_login = BruteForceLogin(args_dictionary,
                                            message_administrator, timer,
                                            form_name_finder,
                                            dictionary_reader, browser_service)

        brute_force_login.execute()
コード例 #14
0
ファイル: Kernel.py プロジェクト: MatLock/OSProject
def main():
    instruction1 = BasicInstruction()
    instruction2 = IO_Instruction()
    instruction3 = Priority_Instruction()
    program = Program('a')
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    program.addInstruction(instruction1)
    programd = Program('d')
    programd.addInstruction(instruction1)
    programd.addInstruction(instruction1)
    programd.addInstruction(instruction1)
    programd.addInstruction(instruction1)
    programd.addInstruction(instruction1)
    programb = Program('b')
    programb.addInstruction(instruction3)
    programc = Program('c')
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    programc.addInstruction(instruction1)
    timer = Timer(2)
    memory = Memory()
    memory.buildMemory(9)
    frame1 = Frame(memory,0,9)
    logger = Logger("/home/matlock/Escritorio/Sistemas Operativos/OSProyect/resource/log.txt")
    mmu = MMU(logger)
    mmu.addEmptyFrame(frame1)
    cpu = CPU(None,mmu,None,timer,logger)
    scheduler = Scheduler(PFIFO())
    ioqueue = IOQueue(scheduler,logger)
    disk = Disk(None)
    kernel = Kernel(cpu,ioqueue,scheduler,mmu,disk,logger)
    disk.setKernel(kernel)
    cpu.setKernel(kernel)
    x = []
    x.append(program)
    x.append(programb)
    x.append(programc)
    x.append(programd)
    kernel.saveOnDisk(x)
    kernel.executeProgram('a')
コード例 #15
0
 def __init__(self,
              args,
              num_nodes,
              svd_name='xgb-svd',
              timer: Timer = None):
     self.timer = Timer() if timer is None else timer
     self.args = args
     self.num_nodes = num_nodes
     self.max_depth = np.ceil(np.log(max(num_nodes))).astype(int)
     self.svd_name = svd_name
     self.cumsum = np.cumsum([0] + self.num_nodes)
     self.embedding_size = args.embedding_size
     self.embeddings = None
     if args.load:
         model_name = "{:s}_{:d}_{:d}".format(svd_name, self.max_depth,
                                              len(num_nodes))
         with open(model_name, "rb") as f:
             self.svds = pickle.load(f)
             self._get_weights()
     else:
         self.svds = TruncatedSVD(n_components=self.embedding_size)
コード例 #16
0
class IEEESplitter:
    def __init__(self, args, load_raw=False):

        self.train_parsed_file = '../data/data/ieee/train.csv'
        self.valid_parsed_file = '../data/data/ieee/valid.csv'
        self.test_parsed_file = '../data/data/ieee/test.csv'
        self.args = args
        self.id_cat_col = ["id_" + str(i) for i in range(12, 39)] + [
            "DeviceType", "DeviceInfo", "id_33_1", "id_31_1", "id_30_1"
        ]
        self.trans_cat_col = ["M" + str(i) for i in range(1, 10)] + ["card" + str(i) for i in range(1, 7)] + \
                             ["ProductCD", "addr1", "addr2", "P_emaildomain", "R_emaildomain"]
        # self.try_list = ["id_" + str(i) for i in [13, 17]]
        self.try_list = ["id_" + str(i) for i in []]

        self.id_onehot_encoder = OneHot(0.01)
        self.trans_onehot_encoder = OneHot(0.01)
        self.id_scaler = Scaler()
        self.trans_scaler = Scaler()

        self.global_name = []
        self.global_df = []

        self.emails = {
            'gmail': 'google',
            'att.net': 'att',
            'twc.com': 'spectrum',
            'scranton.edu': 'other',
            'optonline.net': 'other',
            'hotmail.co.uk': 'microsoft',
            'comcast.net': 'other',
            'yahoo.com.mx': 'yahoo',
            'yahoo.fr': 'yahoo',
            'yahoo.es': 'yahoo',
            'charter.net': 'spectrum',
            'live.com': 'microsoft',
            'aim.com': 'aol',
            'hotmail.de': 'microsoft',
            'centurylink.net': 'centurylink',
            'gmail.com': 'google',
            'me.com': 'apple',
            'earthlink.net': 'other',
            'gmx.de': 'other',
            'web.de': 'other',
            'cfl.rr.com': 'other',
            'hotmail.com': 'microsoft',
            'protonmail.com': 'other',
            'hotmail.fr': 'microsoft',
            'windstream.net': 'other',
            'outlook.es': 'microsoft',
            'yahoo.co.jp': 'yahoo',
            'yahoo.de': 'yahoo',
            'servicios-ta.com': 'other',
            'netzero.net': 'other',
            'suddenlink.net': 'other',
            'roadrunner.com': 'other',
            'sc.rr.com': 'other',
            'live.fr': 'microsoft',
            'verizon.net': 'yahoo',
            'msn.com': 'microsoft',
            'q.com': 'centurylink',
            'prodigy.net.mx': 'att',
            'frontier.com': 'yahoo',
            'anonymous.com': 'other',
            'rocketmail.com': 'yahoo',
            'sbcglobal.net': 'att',
            'frontiernet.net': 'yahoo',
            'ymail.com': 'yahoo',
            'outlook.com': 'microsoft',
            'mail.com': 'other',
            'bellsouth.net': 'other',
            'embarqmail.com': 'centurylink',
            'cableone.net': 'other',
            'hotmail.es': 'microsoft',
            'mac.com': 'apple',
            'yahoo.co.uk': 'yahoo',
            'netzero.com': 'other',
            'yahoo.com': 'yahoo',
            'live.com.mx': 'microsoft',
            'ptd.net': 'other',
            'cox.net': 'other',
            'aol.com': 'aol',
            'juno.com': 'other',
            'icloud.com': 'apple'
        }

        self.drop_col = [
            'TransactionDT', 'V300', 'V309', 'V111', 'C3', 'V124', 'V106',
            'V125', 'V315', 'V134', 'V102', 'V123', 'V316', 'V113', 'V136',
            'V305', 'V110', 'V299', 'V289', 'V286', 'V318', 'V103', 'V304',
            'V116', 'V298', 'V284', 'V293', 'V137', 'V295', 'V301', 'V104',
            'V311', 'V115', 'V109', 'V119', 'V321', 'V114', 'V133', 'V122',
            'V319', 'V105', 'V112', 'V118', 'V117', 'V121', 'V108', 'V135',
            'V320', 'V303', 'V297', 'V120'
        ]
        self.us_emails = ['gmail', 'net', 'edu']

        self.timer = Timer()

        if load_raw:
            df_trans = pd.read_csv("../data/data/ieee/train_transaction.csv"
                                   ).set_index("TransactionID")
            df_id_raw = pd.read_csv("../data/data/ieee/train_identity.csv"
                                    ).set_index("TransactionID")
            dt_trans = pd.read_csv("../data/data/ieee/test_transaction.csv"
                                   ).set_index("TransactionID")
            dt_id = pd.read_csv("../data/data/ieee/test_identity.csv"
                                ).set_index("TransactionID")
            self.timer.toc("read done")

            self.test_id = list(dt_trans.index)

            df_trans, dv_trans = train_test_split(
                df_trans,
                random_state=args.random_state,
                train_size=0.8,
                test_size=0.2)

            df_id = df_id_raw.loc[
                df_trans.index.intersection(df_id_raw.index), :]

            dv_id = df_id_raw.loc[
                dv_trans.index.intersection(df_id_raw.index), :]
            self.timer.toc("split done")

            self.feature_engineering_id(df_id)
            self.feature_engineering_id(dv_id)
            self.feature_engineering_id(dt_id)
            self.timer.toc("process id done")

            self.feature_engineering_trans(df_trans)
            self.feature_engineering_trans(dv_trans)
            self.feature_engineering_trans(dt_trans)
            self.timer.toc("process trans done")

            self.global_count(df_id, df_trans)
            self.timer.toc("global_count done")

            df_trans, ytrain = self.split_x_y(df_trans)
            dv_trans, yvalid = self.split_x_y(dv_trans)
            dt_trans, ytest = self.split_x_y(dt_trans)

            df_global = self.get_derived(df_id)
            self.timer.toc("get train derived done")
            dv_global = self.get_derived(dv_id)
            self.timer.toc("get valid derived done")
            dt_global = self.get_derived(dt_id)
            self.timer.toc("get test derived done")

            self.init_onehot(df_id, df_trans)
            self.init_scaler(df_id.drop(self.id_cat_col, axis=1),
                             df_trans.drop(self.trans_cat_col, axis=1))

            Xtrain = self.transform(df_id, df_trans, df_global)
            self.timer.toc("transform train done")
            Xvalid = self.transform(dv_id, dv_trans, dv_global)
            self.timer.toc("transform valid done")
            Xtest = self.transform(dt_id, dt_trans, dt_global)
            self.timer.toc("transform test done")

            pd.concat([Xtrain, ytrain], axis=1).to_csv(self.train_parsed_file,
                                                       float_format='%.8f',
                                                       index=True)
            self.timer.toc("write train done")
            pd.concat([Xvalid, yvalid], axis=1).to_csv(self.valid_parsed_file,
                                                       float_format='%.8f',
                                                       index=True)
            self.timer.toc("write valid done")
            Xtest.to_csv(self.test_parsed_file,
                         float_format='%.8f',
                         index=True)
            self.timer.toc("write test done")

            raise Exception("STOP HERE!")
        else:
            self.train = self.load(self.train_parsed_file)
            self.timer.toc("load train done")
            self.valid = self.load(self.valid_parsed_file)
            self.timer.toc("load valid done")
            self.test = self.load(self.test_parsed_file, test=True)
            self.timer.toc("load test done")
            self.num_input = self.train[0].shape[1]

            # sanity check
            print(np.unique(self.train[1], return_counts=True))
            print(np.unique(self.valid[1], return_counts=True))

        # self.train = Xtrain, ytrain.values
        # self.valid = Xvalid, yvalid.values
        # self.test = Xtest, ytest.values
        # self.num_input = Xtrain.shape[1]

    def load(self, file, test=False):
        df = pd.read_csv(file)
        if not test:
            X = df.drop(['TransactionID', 'isFraud'], axis=1)
            y = df['isFraud']
        else:
            X = df.drop('TransactionID', axis=1)
            y = pd.Series(np.zeros(len(df)))
            y.iloc[:10] = 1
            self.test_id = df['TransactionID']
        return X.values, y.values

    def transform(self, df_id, df_trans, df_global):
        id_num, id_cat = self.id_onehot_encoder.transform(df_id)
        id_num = self.id_scaler.transform(id_num)
        id = pd.concat([id_num, id_cat], axis=1)
        # id = pd.concat([df_global, id_num, id_cat], axis=1)

        trans_num, trans_cat = self.trans_onehot_encoder.transform(df_trans)
        trans_num = self.trans_scaler.transform(trans_num)
        trans = pd.concat([trans_num, trans_cat], axis=1)

        return trans.merge(id, how='left', left_index=True, right_index=True)

    def init_onehot(self, df_id, df_trans):
        self.id_onehot_encoder.fit(df_id, self.id_cat_col)
        self.trans_onehot_encoder.fit(df_trans, self.trans_cat_col)

    def init_scaler(self, df_id, df_trans):
        self.id_scaler.fit(df_id)
        self.trans_scaler.fit(df_trans)

    def get_derived(self, df_id):
        return
        temp = df_id[self.try_list]
        df_list = []  # [df_id[['TransactionID']]]
        for i in range(len(self.global_name)):
            li = self.global_name[i]
            column_name = self.global_df[i].columns[0]
            merged = temp.merge(self.global_df[i].reset_index(),
                                how='left',
                                on=li)
            merged.index = temp.index
            df_list.append(merged[[column_name]])
        return pd.concat(df_list, axis=1)

    @staticmethod
    def split_x_y(df):
        if 'isFraud' in df.columns:
            return df.drop('isFraud', axis=1), df['isFraud']
        else:
            y = pd.Series(np.zeros(len(df)), index=df.index)
            y.iloc[:10] = 1

            return df, y

    @staticmethod
    def parse_device_info(y):
        if type(y) is not str:
            return np.nan
        x = y.lower()
        if x.startswith("rv"):
            return "rv"
        elif x.startswith("sm-"):
            return "sm"
        elif x.startswith("trident"):
            return "trident"
        elif x.startswith("moto"):
            return "moto"
        elif x.startswith("lg"):
            return "lg"
        elif x.startswith("samsung"):
            return "sm"
        elif x.startswith("windows"):
            return "windows"
        elif x.startswith("ios"):
            return "ios"
        elif x.startswith("macos"):
            return "macos"
        else:
            return np.nan

    @staticmethod
    def feature_engineering_id(dg):
        dg["id_33_1"] = dg["id_33"].apply(lambda x: int(x.split("x")[0])
                                          if type(x) is str else np.nan)
        dg["id_33"] = dg["id_33"].apply(lambda x: int(x.split("x")[1])
                                        if type(x) is str else np.nan)

        dg["id_31_1"] = dg["id_31"].apply(lambda x: x.split(" ")[0]
                                          if type(x) is str else np.nan)
        dg["id_31"] = dg["id_31"].apply(lambda x: x.split(" ")[1] if type(
            x) is str and len(x.split(" ")) > 1 else np.nan)

        dg["id_30_1"] = dg["id_30"].apply(lambda x: x.split(" ")[0]
                                          if type(x) is str else np.nan)
        dg["id_30"] = dg["id_30"].apply(lambda x: x.split(" ")[1] if type(
            x) is str and len(x.split(" ")) > 1 else np.nan)

        dg["DeviceInfo"] = dg["DeviceInfo"].apply(
            IEEESplitter.parse_device_info)

        dg["nulls_id"] = dg.isna().sum(axis=1)

    def feature_engineering_trans(self, dg):
        def get_suffix(x):
            suffix = str(x).split(".")[-1]
            return x if str(x) not in self.us_emails else 'us'

        dg["nulls_trans"] = dg.isna().sum(axis=1)
        for col in ["P_emaildomain", "R_emaildomain"]:
            dg[col + "_bin"] = dg[col].map(self.emails)
            dg[col + "_suffix"] = dg[col].apply(get_suffix)

        dg.drop(self.drop_col, axis=1, inplace=True)

    def global_count(self, df_id, df_trans):
        try_lists = IEEESplitter.powerset(self.try_list)
        df_temp = df_id.merge(df_trans[['isFraud']],
                              how='left',
                              left_index=True,
                              right_index=True)
        df_temp = df_temp[['isFraud'] + self.try_list]
        for selected in try_lists:
            selected = list(selected)
            groupby = df_temp[['isFraud'] + selected].groupby(selected).mean()
            groupby.columns = ["global_" + "_".join(selected)]
            self.global_name.append(selected)
            self.global_df.append(groupby)

    @staticmethod
    def powerset(li):
        l = []
        from itertools import combinations
        for i in range(1, len(li) + 1):
            l = l + list(combinations(li, i))
        return l

    def export(self, inference, out_csv):
        df = pd.DataFrame()
        df['TransactionID'] = self.test_id
        df['isFraud'] = inference
        df.to_csv("../data/data/ieee/" + out_csv, index=False)
コード例 #17
0
def EM(M,x0,u,y,Q,R,alpha=1,maxit=1000,numerical=True,tol=1e-6,conit=100,gembed=1):
    
    """
    Expectation Maximization
    INPUTS
      M            Data-structure of Model class
      x0           Initial hidden state - 1-dimensional array_like (list works)
      u            Input sequence nu x N numpy_array 
      y            Output sequence ny x N numpy_array 
      Q            State-noise covariance - nx x nx numpy_array 
      R            Output-noise covariance - ny x ny numpy_array 
      alpha        Updating gain - scalar float, int - (opt. def=1)
      maxit        Max. number of iterations - scalar int - (opt. def=1000)
      numerical    Use numerical gradients - boolean - (opt. def=True)
      tol          Error tolerance for stopping cond. - float - (opt. def=True)
      conit        Number of converence iterations. - fint - (opt. def=100)
      gembed       Gradient-embedding order (if algebraical gradient )
                                                  - scalar int - (opt. def=1)
    OUTPUTS
      dat          Data-structure of pedata class containing
    """
    
    # Allocate memory
    J  = zeros((    1,       maxit));
    K  = zeros(( M.nx, M.ny, maxit));
    P  = zeros(( M.nx, M.nx, maxit));
    S  = zeros(( M.ny, M.ny, maxit));
    th = zeros((M.nth,       maxit));
    th[:,0] = M.th;
    
    # Set-up loop
    i = 0;
    j = 0;
    T = Timer('Expectation Maximization',i,maxit-1,maxit-1);
    
    # Run loop
    while i < maxit-1 and j < conit:
        
        # Update cost, covariance and parameter estimates
        if numerical:
            J[:,i],K[:,:,i],P[:,:,i],S[:,:,i],th[:,i+1] \
                    = NEMstep(M,x0,u,y,Q,R,alpha)[0:5];
        else:
            J[:,i],K[:,:,i],P[:,:,i],S[:,:,i],th[:,i+1] \
                    = AEMstep(M,x0,u,y,Q,R,alpha,gembed)[0:5];
        
        M.th = th[:,i+1];
    
        # Stopping criterion: J < <tol> in last <conit> iterations
        if j == 0:
            if abs(J[:,i]-J[:,i-1]) < tol:
                j = 1;
        else:
            if abs(J[:,i]-J[:,i-1]) < tol:
                j +=1;
            else:
                j = 0;
        i +=1;
        T.looptime(i);
    
    # Get final hidden state and output estimations
    xp,xu,yp,yu = M.filt(K[:,:,i],x0,u,y);
    
    # If converged before maxit, then fill remainer of matrices with last value
    for j in range(i-1,maxit):
        J[:,j]   = J[:,i-1]
        K[:,:,j] = K[:,:,i-1]
        P[:,:,j] = P[:,:,i-1]
        S[:,:,j] = S[:,:,i-1]
        th[:,j]  = th[:,i]
    
    dat = pedata('EM',M,J,K,P,S,th,xp,xu,yp,yu);
    return dat;
コード例 #18
0
 def __init__(self, embedding_size, timer: Timer = None):
     self.timer = Timer() if timer is None else timer
コード例 #19
0
ファイル: Main.py プロジェクト: kk-leung/xgb-embedding
parser.add_argument('--all_trees', type=bool, default=True)

parser.add_argument('--mlp_num_epoch', type=int, default=1000)
parser.add_argument('--mlp_lr', type=float, default=3e-6, help='learning rate')
parser.add_argument('--mlp_batch_size', type=int, default=64)
parser.add_argument('--mlp_dropout', type=float, default=0.5)
parser.add_argument('--mlp_weight_decay', type=float, default=0)
parser.add_argument('--n_latent', type=int, default=100)

#################### Finalizing args
args = parser.parse_args()
if args.random_state is not None:
    torch.manual_seed(args.random_state)
print("args = ", args)

timer = Timer()


def main():
    # split
    splitter = IEEESplitter(args)
    # splitter = SantanderSplitter("../data/santander/train.csv", args)

    # train xgb
    trainer = XGBTrainer(splitter, args, timer)

    pred = trainer.predict(splitter.test[0])
    splitter.export(pred, "xgb_pred.csv")

    # train embedding
    # embs = train_xgb_emb(trainer)
コード例 #20
0
ファイル: train_mlp.py プロジェクト: kk-leung/xgb-embedding
class MLPTrainer:
    def __init__(self, args, num_input, mode='both', timer: Timer = None):
        self.args = args
        self.timer = Timer() if timer is None else timer

        if args.all_trees and False:
            self.embedding_size_to_mlp = args.embedding_size  # * args.num_trees_for_embedd
        else:
            self.embedding_size_to_mlp = args.embedding_size * args.num_trees_for_embedding
        if mode is 'raw_only':
            num_features = num_input
        elif mode is 'emb_only':
            num_features = self.embedding_size_to_mlp
            # num_features = args.embedding_size
        elif mode is 'both':
            num_features = self.embedding_size_to_mlp + num_input
            # num_features = args.embedding_size + num_input
        else:
            raise Exception(
                "unidentified mode. possible={'raw_only', 'emb_only', 'both'}")

        if args.load_mlp:
            model_name = "{:s}_{:d}_{:d}.chkpt".format(
                self.args.mlp_model_name, self.args.max_depth,
                self.args.num_trees_for_embedding)
            self.model = torch.load(model_name)['model']
        else:
            self.model = MLP(args, num_features)
        self.mode = mode
        self.loss = torch.nn.BCEWithLogitsLoss(reduction='mean')
        total_params = sum(x.data.nelement() for x in self.model.parameters())
        print("Model total number of parameters: {}".format(total_params))

    def trainIters(self, train, valid):

        early_stopper = EarlyStopper(3, 'moving', reverse=True)
        max_auc = 0

        # ADAM opts
        opt = optim.Adam(self.model.parameters(),
                         lr=self.args.mlp_lr,
                         weight_decay=self.args.mlp_weight_decay)

        ################ Training epoch
        self.model.cuda()
        for epoch in range(1, self.args.mlp_num_epoch + 1):
            self.model.train()
            train_losses = self.train_model(opt, train)

            valid_losses, results, ground_truths = self.valid_model(valid)
            valid_auc = self.evaluate(results,
                                      ground_truths,
                                      print_result=False)

            self.timer.toc(
                "epoch {:4d} - train loss: {:10.6f}   valid loss: {:10.6f}   valid auc: {:10.6f}"
                .format(epoch, np.mean(train_losses), np.mean(valid_losses),
                        valid_auc))

            checkpoint = {'model': self.model, 'args': self.args}
            model_name = "{:s}_{:d}_{:d}.chkpt".format(
                self.args.mlp_model_name, self.args.max_depth,
                self.args.num_trees_for_embedding)

            if valid_auc > max_auc:
                max_auc = valid_auc
                torch.save(checkpoint, model_name)

            if early_stopper.record(valid_auc):
                self.model = torch.load(model_name)['model']
                return

    def valid_model(self, valid):
        valid_losses = []
        results = []
        ground_truths = []

        self.model.eval()
        for batch, x in enumerate(valid):
            out = self.model(x[0].cuda())
            loss = self.loss(out, x[1].cuda())
            valid_losses.append(loss.item())
            results.append(torch.sigmoid(out))
            ground_truths.append(x[1])
            # x = x.cpu()
        inference_result = torch.cat(results, dim=0).detach().cpu().numpy()
        ground_truth = torch.cat(ground_truths, dim=0).detach().cpu().numpy()

        return valid_losses, inference_result, ground_truth

    def train_model(self, opt, train):
        train_losses = []
        for batch, x in enumerate(train):
            opt.zero_grad()
            out = self.model(x[0].cuda())
            loss = self.loss(out, x[1].cuda())
            loss.backward()
            opt.step()
            # x = x.cpu()
            train_losses.append(loss.item())
        return train_losses

    def inference(self, test):
        self.model.cuda()
        self.model.eval()
        results = []
        ground_truths = []
        for batch, x in enumerate(test):
            results.append(
                torch.sigmoid(self.model(x[0].cuda())).detach().cpu().numpy())
            ground_truths.append(x[1].detach().cpu().numpy())
        return np.concatenate(results, axis=0), np.concatenate(ground_truths,
                                                               axis=0)
        # return torch.cat(results, dim=0).detach().cpu().numpy(), torch.cat(ground_truths, dim=0).detach().cpu().numpy()

    @staticmethod
    def evaluate(pred, ground_truth, print_result=True):
        auc = roc_auc_score(ground_truth, pred)
        if print_result:
            print("AUC = ", auc)
            print("error = ",
                  1 - np.sum(np.round(pred) == ground_truth) / len(pred))
        return auc

    def get_loader(self, raw, emb, shuffle=True):
        X, y = raw
        if self.mode is 'both':
            norm = np.linalg.norm(emb, axis=-1, keepdims=True)
            emb = emb / (norm + 1e-8)
            # if not self.args.all_trees:
            emb = emb.reshape(-1, self.embedding_size_to_mlp)
            # emb = np.mean(emb, axis=1)
            X = np.concatenate([X, emb], axis=1)
        elif self.mode is 'raw_only':
            pass
        elif self.mode is 'emb_only':
            norm = np.linalg.norm(emb, axis=-1, keepdims=True)
            emb = emb / (norm + 1e-8)
            # if not self.args.all_trees:
            X = emb.reshape(-1, self.embedding_size_to_mlp)
            # else:
            #     X = emb
            # X = np.mean(emb, axis=1)
        else:
            raise Exception(
                "unidentified mode. possible={'raw_only', 'emb_only', 'both'}")
        dataset = MLPDataset(np.nan_to_num(X, copy=False), y)
        return DataLoader(dataset,
                          batch_size=self.args.mlp_batch_size,
                          shuffle=shuffle)

    def run(self, raws, embs):
        train_loader = self.get_loader(raws[0], embs[0])
        self.timer.toc("train loader done")
        valid_loader = self.get_loader(raws[1], embs[1])
        self.timer.toc("valid loader done")
        test_loader = self.get_loader(raws[2], embs[2], shuffle=False)
        self.timer.toc("test loader done")
        if not self.args.load_mlp:
            self.trainIters(train_loader, valid_loader)
        train_pred, train_true = self.inference(train_loader)
        self.timer.toc("train inference done")
        valid_pred, valid_true = self.inference(valid_loader)
        self.timer.toc("valid inference done")
        test_pred, test_true = self.inference(test_loader)
        self.timer.toc("test inference done")
        print('train')
        self.evaluate(train_pred, train_true)
        print('valid')
        self.evaluate(valid_pred, valid_true)
        print('test')
        self.evaluate(test_pred, test_true)
        return test_pred
コード例 #21
0
ファイル: UIDump.py プロジェクト: heyzhangz/UIDump
    def __getConfig(self, argv):

        try:
            opts, args = getopt.getopt(
                argv, "p:f:m:o:d:",
                ["package=", "apkfile=", "monkeytime=", "output=", "device="])
        except getopt.GetoptError:
            self.__printUseMethod()
            sys.exit(2)

        for opt, arg in opts:
            if opt == '-h':
                self.__printUseMethod()
                sys.exit()
            elif opt in ("-p", "--package"):
                self.pkgname = arg
            elif opt in ("-f", "--apkfile"):
                self.apkFilePath = arg
            elif opt in ("-m", "--monkeytime"):
                self.monkeyTime = int(arg)
                self.monkeyMode = True
            elif opt in ("-o", "--output"):
                self.recordOutPath = arg
                if not os.path.exists(self.recordOutPath):
                    os.makedirs(self.recordOutPath)
            elif opt in ("-d", "--device"):
                self.udid = arg
            else:
                print("err in args")
                self.__printUseMethod()
                sys.exit(1)

        if self.pkgname == "" or self.pkgname is None:
            print("package name is necessary")
            self.__printUseMethod()
            sys.exit(1)

        # 未指定设备取第一个
        if self.udid == "":
            print("no specified device!")
            self.udid = [
                line.split('\t')[0]
                for line in os.popen("adb devices", 'r', 1).read().split('\n')
                if len(line) != 0 and line.find('\tdevice') != -1
            ][0]
            if self.udid == "":
                print("no available devices!")
                sys.exit(1)

                # 初始化Logger
        self.logger = initLogger(loggerName="UIDump_%s" % self.pkgname,
                                 outputPath=os.path.join(
                                     LOG_OUTPUT_PATH,
                                     "UIDump_%s.log" % self.pkgname),
                                 udid=self.udid)

        # 初始化 uiautomator
        try:
            self.device = DeviceConnect(self.logger, self.udid)
        except Exception as e:
            self.runStatus = RunStatus.UI2_INIT_ERR
            return

        # Monkey模式 设置计时器
        if self.monkeyMode:
            self.timer = Timer(logger=self.logger,
                               duration=self.monkeyTime,
                               device=self.device)

        # APK_FILE不为空,表示需要从指定路径安装app
        if self.apkFilePath is not "":
            self.runStatus = self.device.installApk(self.pkgname,
                                                    self.apkFilePath)

        pass
コード例 #22
0
ファイル: UIDump.py プロジェクト: heyzhangz/UIDump
class UIDump:
    def __init__(self, argv):

        self.udid = ""
        self.pkgname = ""
        self.dumpInterval = DUMP_INTERVAL
        self.apkFilePath = ""
        self.monkeyMode = False
        self.monkeyTime = MONKEY_TIME
        self.recordOutPath = RECORD_OUTPUT_PATH
        self.device = None
        self.timer = None
        self.logger = None
        self.runStatus = RunStatus.SUCCESS

        self.__getConfig(argv)

        pass

    def __getConfig(self, argv):

        try:
            opts, args = getopt.getopt(
                argv, "p:f:m:o:d:",
                ["package=", "apkfile=", "monkeytime=", "output=", "device="])
        except getopt.GetoptError:
            self.__printUseMethod()
            sys.exit(2)

        for opt, arg in opts:
            if opt == '-h':
                self.__printUseMethod()
                sys.exit()
            elif opt in ("-p", "--package"):
                self.pkgname = arg
            elif opt in ("-f", "--apkfile"):
                self.apkFilePath = arg
            elif opt in ("-m", "--monkeytime"):
                self.monkeyTime = int(arg)
                self.monkeyMode = True
            elif opt in ("-o", "--output"):
                self.recordOutPath = arg
                if not os.path.exists(self.recordOutPath):
                    os.makedirs(self.recordOutPath)
            elif opt in ("-d", "--device"):
                self.udid = arg
            else:
                print("err in args")
                self.__printUseMethod()
                sys.exit(1)

        if self.pkgname == "" or self.pkgname is None:
            print("package name is necessary")
            self.__printUseMethod()
            sys.exit(1)

        # 未指定设备取第一个
        if self.udid == "":
            print("no specified device!")
            self.udid = [
                line.split('\t')[0]
                for line in os.popen("adb devices", 'r', 1).read().split('\n')
                if len(line) != 0 and line.find('\tdevice') != -1
            ][0]
            if self.udid == "":
                print("no available devices!")
                sys.exit(1)

                # 初始化Logger
        self.logger = initLogger(loggerName="UIDump_%s" % self.pkgname,
                                 outputPath=os.path.join(
                                     LOG_OUTPUT_PATH,
                                     "UIDump_%s.log" % self.pkgname),
                                 udid=self.udid)

        # 初始化 uiautomator
        try:
            self.device = DeviceConnect(self.logger, self.udid)
        except Exception as e:
            self.runStatus = RunStatus.UI2_INIT_ERR
            return

        # Monkey模式 设置计时器
        if self.monkeyMode:
            self.timer = Timer(logger=self.logger,
                               duration=self.monkeyTime,
                               device=self.device)

        # APK_FILE不为空,表示需要从指定路径安装app
        if self.apkFilePath is not "":
            self.runStatus = self.device.installApk(self.pkgname,
                                                    self.apkFilePath)

        pass

    def __printUseMethod(self):
        print("UIDump.py -p <app-package-name> [-t] <dump-interval> "
              "[-f] <apk-file-path> [-m] <monkey-run-time> [-o] <output-path>")
        print("arguments : ")
        print(
            "-p --package\tinput app is necessary, such as \"-p com.tencent.mm\""
        )
        print(
            "-f --apkfile\tapk file path, if the app isn't installed, "
            "you can specify the apk file path, such as '/home/user/a.apk' or 'http://127.0.0.1:8000/user/a.apk"
        )
        print(
            "-m --monkeytime\t monkey run time, if it isn't specified, you can dump through manual operation"
        )
        print("-o --output\t output path, default is ./output/record")

        pass

    def startUIDump(self):

        if not isSuccess(self.runStatus):
            self.device.uninstallApk(self.pkgname)
            return self.runStatus

        self.logger.info(
            "start record mode, the package is %s and dump interval is %d" %
            (self.pkgname, self.dumpInterval))

        timestamp = time.strftime('%Y%m%d%H%M', time.localtime())
        self.logger.info("log start at %s" % timestamp)

        try:
            self.runStatus = self.startRecord(timestamp)
        except Exception as e:
            traceback.print_exc()
            self.logger.error("unknown err in dump %s, Reason: %s" %
                              (self.pkgname, e))
            self.runStatus = RunStatus.ERROR

        if self.apkFilePath is not "":
            self.device.uninstallApk(self.pkgname)

        timestamp = time.strftime('%Y%m%d%H%M', time.localtime())
        self.logger.info("log end at %s\r\n" % timestamp)

        return self.runStatus

    def startRecord(self, timestamp):

        if self.pkgname == "":
            self.logger.error("no input package name")
            return RunStatus.ERROR

        if self.pkgname not in self.device.getInstalledApps():
            self.logger.error("%s is not installed" % self.pkgname)
            return RunStatus.APK_INSTALL_ERR

        outputpath = os.path.join(self.recordOutPath,
                                  self.pkgname + "_" + timestamp)

        if not os.path.exists(outputpath):
            os.makedirs(outputpath)

        # 初始化frida
        # ch = CallerHook(self.pkgname, outputpath)

        time.sleep(1)

        # 设置回调事件
        try:
            # self.device.startWatchers()
            pass
        except Exception:
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start watcher")
            return RunStatus.UI2_WATCHER_ERR

        if self.timer is None:
            # 没设置Timer, 人工跑APP还是用home键退出脚本
            stopcondition = self.device.getCurrentApp()
            while stopcondition is "":
                stopcondition = self.device.getCurrentApp()
            self.timer = Timer(stopcondition=stopcondition,
                               device=self.device,
                               logger=self.logger)

        self.device.pressHome()
        dumpcount = 1
        time.sleep(1)

        # 目前利用frida孵化进程有bug,用Monkey起
        self.runStatus = self.device.startApp(self.pkgname)
        if not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start app")
            return self.runStatus

        # ch.start_hook(os.path.join("OneForAllHook", "_agent.js"), str(self.udid))
        time.sleep(5)  # 有时候app界面还没加载出来,等5s

        # 如果设置了MONKEY_TIME,启动monkey
        monkey = None
        if self.monkeyMode and self.device.getAppInstallStatus():
            monkey = Monkey(logger=self.logger,
                            udid=self.udid,
                            pkgname=self.pkgname,
                            timeInterval=MONKEY_TIME_INTERVAL,
                            outdir=outputpath)
            self.runStatus = monkey.startMonkey()
        if not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start monkey")
            return self.runStatus

        # 启动计时器
        starttime = self.timer.start()
        # 异常重启次数,有些app确实起不起来,最多重启3次
        errRestartCount = 0
        # 等待启动之后再轮询判断是否已经退出
        while True:
            if not self.device.isAppRun(self.pkgname):
                self.logger.info("app %s is not running " % self.pkgname)
                if monkey is not None:
                    execStatus, self.runStatus = monkey.stopMonkey()
                    if execStatus:
                        monkey = None
                    if not isSuccess(self.runStatus):
                        break
                # 如果app异常退出,且计时未结束重启app
                # getAppInstallStatus 避免当前app因为apk问题导致反复重启
                if self.monkeyMode and not self.timer.isFinish(
                ) and self.device.getAppInstallStatus(
                ) and errRestartCount < 3:
                    errRestartCount += 1
                    self.logger.warning(
                        "Abnormal termination in app running, restart, count = %d"
                        % errRestartCount)
                    self.device.closeWatchers()

                    try:
                        self.device.startWatchers()
                    except Exception:
                        self.runStatus = RunStatus.UI2_WATCHER_ERR
                        break

                    self.runStatus = self.device.startApp(self.pkgname)
                    if not isSuccess(self.runStatus):
                        break

                    # ch.start_hook(os.path.join("OneForAllHook", "_agent.js"), str(self.udid))
                    time.sleep(5)
                    monkey = Monkey(logger=self.logger,
                                    udid=self.udid,
                                    pkgname=self.pkgname,
                                    timeInterval=MONKEY_TIME_INTERVAL,
                                    outdir=outputpath)
                    self.runStatus = monkey.startMonkey()
                    if not isSuccess(self.runStatus):
                        break

                    continue

                self.device.stopApp(self.pkgname)
                self.logger.info(
                    self.pkgname +
                    " is canceled, stop record, with restart count = %d" %
                    errRestartCount)
                # ch.stop_hook()
                self.device.pressHome()
                break

            self.logger.info("dump %s UI" % str(dumpcount))
            self.runStatus = self.device.dumpUI(outputpath, dumpcount)
            if not isSuccess(self.runStatus):
                break
            dumpcount += 1
            time.sleep(self.dumpInterval)
            if self.timer.isFinish():
                if monkey is not None:
                    execStatus, self.runStatus = monkey.stopMonkey()
                    if execStatus:
                        monkey = None
                    if not isSuccess(self.runStatus):
                        break
                self.device.stopApp(self.pkgname)
                self.device.pressHome()
                break

        self.device.closeWatchers()
        time.sleep(5)

        if monkey is not None:
            _, self.runStatus = monkey.stopMonkey()

        if not self.device.getAppInstallStatus():
            import shutil
            shutil.rmtree(outputpath)
            self.logger.warning("err in apk, pass the case")
            return RunStatus.APK_INSTALL_ERR
        elif errRestartCount >= 3:
            import shutil
            shutil.rmtree(outputpath)
            self.logger.warning("app restart more than 3 times, pass the case")
            return RunStatus.APK_INSTALL_ERR
        elif not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in restart record")
            return self.runStatus
        else:
            self.device.saveLog(outputpath, starttime)
            self.logger.info("the output saved in " + outputpath)

        return self.runStatus.SUCCESS
コード例 #23
0
ファイル: UIDump.py プロジェクト: heyzhangz/UIDump
    def startRecord(self, timestamp):

        if self.pkgname == "":
            self.logger.error("no input package name")
            return RunStatus.ERROR

        if self.pkgname not in self.device.getInstalledApps():
            self.logger.error("%s is not installed" % self.pkgname)
            return RunStatus.APK_INSTALL_ERR

        outputpath = os.path.join(self.recordOutPath,
                                  self.pkgname + "_" + timestamp)

        if not os.path.exists(outputpath):
            os.makedirs(outputpath)

        # 初始化frida
        # ch = CallerHook(self.pkgname, outputpath)

        time.sleep(1)

        # 设置回调事件
        try:
            # self.device.startWatchers()
            pass
        except Exception:
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start watcher")
            return RunStatus.UI2_WATCHER_ERR

        if self.timer is None:
            # 没设置Timer, 人工跑APP还是用home键退出脚本
            stopcondition = self.device.getCurrentApp()
            while stopcondition is "":
                stopcondition = self.device.getCurrentApp()
            self.timer = Timer(stopcondition=stopcondition,
                               device=self.device,
                               logger=self.logger)

        self.device.pressHome()
        dumpcount = 1
        time.sleep(1)

        # 目前利用frida孵化进程有bug,用Monkey起
        self.runStatus = self.device.startApp(self.pkgname)
        if not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start app")
            return self.runStatus

        # ch.start_hook(os.path.join("OneForAllHook", "_agent.js"), str(self.udid))
        time.sleep(5)  # 有时候app界面还没加载出来,等5s

        # 如果设置了MONKEY_TIME,启动monkey
        monkey = None
        if self.monkeyMode and self.device.getAppInstallStatus():
            monkey = Monkey(logger=self.logger,
                            udid=self.udid,
                            pkgname=self.pkgname,
                            timeInterval=MONKEY_TIME_INTERVAL,
                            outdir=outputpath)
            self.runStatus = monkey.startMonkey()
        if not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in start monkey")
            return self.runStatus

        # 启动计时器
        starttime = self.timer.start()
        # 异常重启次数,有些app确实起不起来,最多重启3次
        errRestartCount = 0
        # 等待启动之后再轮询判断是否已经退出
        while True:
            if not self.device.isAppRun(self.pkgname):
                self.logger.info("app %s is not running " % self.pkgname)
                if monkey is not None:
                    execStatus, self.runStatus = monkey.stopMonkey()
                    if execStatus:
                        monkey = None
                    if not isSuccess(self.runStatus):
                        break
                # 如果app异常退出,且计时未结束重启app
                # getAppInstallStatus 避免当前app因为apk问题导致反复重启
                if self.monkeyMode and not self.timer.isFinish(
                ) and self.device.getAppInstallStatus(
                ) and errRestartCount < 3:
                    errRestartCount += 1
                    self.logger.warning(
                        "Abnormal termination in app running, restart, count = %d"
                        % errRestartCount)
                    self.device.closeWatchers()

                    try:
                        self.device.startWatchers()
                    except Exception:
                        self.runStatus = RunStatus.UI2_WATCHER_ERR
                        break

                    self.runStatus = self.device.startApp(self.pkgname)
                    if not isSuccess(self.runStatus):
                        break

                    # ch.start_hook(os.path.join("OneForAllHook", "_agent.js"), str(self.udid))
                    time.sleep(5)
                    monkey = Monkey(logger=self.logger,
                                    udid=self.udid,
                                    pkgname=self.pkgname,
                                    timeInterval=MONKEY_TIME_INTERVAL,
                                    outdir=outputpath)
                    self.runStatus = monkey.startMonkey()
                    if not isSuccess(self.runStatus):
                        break

                    continue

                self.device.stopApp(self.pkgname)
                self.logger.info(
                    self.pkgname +
                    " is canceled, stop record, with restart count = %d" %
                    errRestartCount)
                # ch.stop_hook()
                self.device.pressHome()
                break

            self.logger.info("dump %s UI" % str(dumpcount))
            self.runStatus = self.device.dumpUI(outputpath, dumpcount)
            if not isSuccess(self.runStatus):
                break
            dumpcount += 1
            time.sleep(self.dumpInterval)
            if self.timer.isFinish():
                if monkey is not None:
                    execStatus, self.runStatus = monkey.stopMonkey()
                    if execStatus:
                        monkey = None
                    if not isSuccess(self.runStatus):
                        break
                self.device.stopApp(self.pkgname)
                self.device.pressHome()
                break

        self.device.closeWatchers()
        time.sleep(5)

        if monkey is not None:
            _, self.runStatus = monkey.stopMonkey()

        if not self.device.getAppInstallStatus():
            import shutil
            shutil.rmtree(outputpath)
            self.logger.warning("err in apk, pass the case")
            return RunStatus.APK_INSTALL_ERR
        elif errRestartCount >= 3:
            import shutil
            shutil.rmtree(outputpath)
            self.logger.warning("app restart more than 3 times, pass the case")
            return RunStatus.APK_INSTALL_ERR
        elif not isSuccess(self.runStatus):
            import shutil
            shutil.rmtree(outputpath)
            self.logger.error("err in restart record")
            return self.runStatus
        else:
            self.device.saveLog(outputpath, starttime)
            self.logger.info("the output saved in " + outputpath)

        return self.runStatus.SUCCESS
コード例 #24
0
ファイル: pump.py プロジェクト: darkmatus/gardenwatering
from src.Timer import Timer
from src.UsbSwitcher import UsbSwitcher
from src.service.CheckService import CheckService

checkService = CheckService()

if (checkService.check()):
    switcher = UsbSwitcher()
    switcher.switch()
    timer = Timer()
    timer.timer()
    switcher.switch()
コード例 #25
0
class Blink_Component:
    def __init__(self, player):
        from src.Timer import Timer
        from src.Sprite import Sprite
        self.valid_blink_points = []
        self.dot_spr = Sprite(ImageEnum.BLINK_DOT)
        self.dot_spr.bounds = (0, 0, 4, 4)
        self.can_blink = False
        self.player = player

        self.blink_frames = 3
        self.is_blinking = False
        self.frame_displacement = (None, None)
        self.frames_passed = None
        self.timer = Timer()
        self.cooldown_ms = 2500
        self.cooldown_passed = False

        self.state = BlinkState.CAN_BLINK

    def get_actual_mouse_pos(self):
        from src.WorldConstants import CONST_CAMERA_PLAYER_OFFSET_X, CONST_CAMERA_PLAYER_OFFSET_Y
        import pygame
        x, y = pygame.mouse.get_pos()
        player_x, player_y = self.player.sprite.sprite_rect().topleft
        # x_origin = 0
        # y_origin = 0
        x_origin = player_x - CONST_CAMERA_PLAYER_OFFSET_X
        y_origin = player_y - CONST_CAMERA_PLAYER_OFFSET_Y

        mouse_x = x + x_origin
        mouse_y = y + y_origin

        return mouse_x, mouse_y

    def fill_valid_blink_points(self):
        player_x, player_y = self.player.sprite.sprite_rect().center
        mouse_x, mouse_y = self.get_actual_mouse_pos()
        if mouse_x == player_x:
            mouse_x += 1
        m = (player_y - mouse_y) / (player_x - mouse_x)
        c = player_y - (m * player_x)

        #self.valid_blink_points = []

        line = Line(player_x, player_y, mouse_x, mouse_y)
        self.valid_blink_points = line.get_valid_points(
            self.player.level, 1, self.player.level.colliders)

        # step = 0
        #
        # if player_x <= mouse_x:
        #     step = 1
        # elif mouse_x < player_x:
        #     step = -1
        #
        # for x in range(player_x, mouse_x, step):
        #     y = m*x + c
        #     if self.player.level.point_in_wall((x, y)) or self.player.level.point_in_collider((x, y)):
        #         break
        #     self.valid_blink_points.append((x, y))

    def draw(self, screen, camera):
        if self.state == BlinkState.SHOWING_LINE:
            self.fill_valid_blink_points()
            for x, y in self.valid_blink_points:
                self.dot_spr.set_location((x, y))
                self.dot_spr.draw(screen, camera)

    def handle_event(self, event):
        pass

    def update(self, deltaTime):

        keys = pygame.key.get_pressed()
        mice = pygame.mouse.get_pressed()
        left_pressed = bool(mice[0])
        from src.WorldConstants import BLINK_KEY

        if False:
            pass

        elif self.state == BlinkState.CAN_BLINK:
            if keys[BLINK_KEY]:
                self.state = BlinkState.SHOWING_LINE

        elif self.state == BlinkState.SHOWING_LINE:
            if not keys[BLINK_KEY]:
                self.state = BlinkState.CAN_BLINK
            elif left_pressed:
                self.state = BlinkState.BLINKING
                play_sound(SoundEnum.BLINK)

        elif self.state == BlinkState.BLINKING:
            is_first_blink_frame = self.frames_passed == None
            if is_first_blink_frame:

                self.frames_passed = 0

                player_x, player_y = self.player.sprite.sprite_rect().center
                valid_x, valid_y = self.valid_blink_points[-1]
                d_x = (valid_x - player_x)
                d_y = (valid_y - player_y)

                self.frame_displacement = (d_x / self.blink_frames,
                                           d_y / self.blink_frames)
                self.player.moving_component.move(self.frame_displacement)

                self.frames_passed = self.frames_passed + 1
            elif not is_first_blink_frame:
                if self.frames_passed < self.blink_frames:
                    self.player.moving_component.move(self.frame_displacement)
                    self.frames_passed = self.frames_passed + 1
                elif self.frames_passed >= self.blink_frames:
                    self.frames_passed = None
                    self.frame_displacement = (None, None)
                    self.timer.reset()
                    self.state = BlinkState.COOLING_DOWN
        elif self.state == BlinkState.COOLING_DOWN:
            cooldown_passed = self.timer.get_time() > self.cooldown_ms
            if cooldown_passed:
                self.state = BlinkState.CAN_BLINK
コード例 #26
0
 def __init__(self, health, cooldown_seconds):
     from src.Timer import Timer
     self.health = health
     self.cooldown_seconds = cooldown_seconds
     self.time_elapsed_since_hit = self.cooldown_seconds
     self.timer = Timer()
コード例 #27
0
 def __init__(self, args, max_length, timer: Timer = None):
     self.timer = Timer() if timer is None else timer
     self.args = args
     self.model: XGBEmbedding = XGBEmbedding(args.num_trees_for_embedding, max_length, args.embedding_size)
     total_params = sum(x.data.nelement() for x in self.model.parameters())
     print("Model total number of parameters: {}".format(total_params))
コード例 #28
0
from src.Timer import Timer

if __name__ == '__main__':
    t = Timer(12)
    t.begin()

コード例 #29
0
class XGBEmbeddingTrainer:
    def __init__(self, args, max_length, timer: Timer = None):
        self.timer = Timer() if timer is None else timer
        self.args = args
        self.model: XGBEmbedding = XGBEmbedding(args.num_trees_for_embedding, max_length, args.embedding_size)
        total_params = sum(x.data.nelement() for x in self.model.parameters())
        print("Model total number of parameters: {}".format(total_params))

    def trainIters(self, train, valid):

        # ADAM opts
        opt = optim.Adam(self.model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)

        early_stopper = EarlyStopper(3, 'moving')
        min_loss = 1e30

        ################ Training epoch
        self.model.cuda()
        for epoch in range(1, self.args.num_epoch + 1):
            self.model.train()
            train_losses = self.train_model(opt, train)

            valid_losses = self.valid_model(valid)
            valid_mean_loss = np.mean(valid_losses)
            self.timer.toc("epoch {:4d} - train loss: {:10.6f}   valid loss: {:10.6f}".format(epoch, np.mean(train_losses),
                                                                                              valid_mean_loss))
            checkpoint = {'model': self.model, 'args': self.args}
            model_name = "{:s}_{:d}_{:d}.chkpt".format(self.args.model_name, self.args.max_depth,
                                                       self.args.num_trees_for_embedding)

            if valid_mean_loss < min_loss:
                min_loss = valid_mean_loss
                torch.save(checkpoint, model_name)
            if early_stopper.record(valid_mean_loss):
                self.model = torch.load(model_name)['model']
                return

    def valid_model(self, valid):
        valid_losses = []
        self.model.eval()
        for batch, x in enumerate(valid):
            x[0] = x[0].cuda()
            loss = torch.mean(self.model(x[0]))
            valid_losses.append(loss.item())
            # x = x.cpu()
        return valid_losses

    def train_model(self, opt, train):
        train_losses = []
        for batch, x in enumerate(train):
            opt.zero_grad()
            x[0] = x[0].cuda()
            loss = torch.mean(self.model(x[0]))
            loss.backward()
            opt.step()
            # x = x.cpu()
            train_losses.append(loss.item())
        return train_losses

    def inference(self, test):
        self.model.cuda()
        self.model.eval()
        results = []
        for batch, x in enumerate(test):
            x[0] = x[0].cuda()
            results.append(self.model.inference(x[0]))
        return torch.cat(results, dim=0).detach().cpu().numpy()

    def init_model(self, train, valid):
        if self.args.load is False:
            self.trainIters(train, valid)
        else:
            model_name = "{:s}_{:d}_{:d}.chkpt".format(self.args.model_name, self.args.max_depth,
                                                       self.args.num_trees_for_embedding)
            self.model = torch.load(model_name)['model']
            self.valid_model(valid)

    def get_embedding(self, loaders, trees):
        XGBEmbeddingEvaluator(self.model.get_weights().detach().cpu().numpy(), trees, print_eval=self.args.print_eval)
        emb = []
        for loader in loaders:
            emb.append(self.inference(loader))
        return emb
コード例 #30
0
    def __init__(self, args, load_raw=False):

        self.train_parsed_file = '../data/data/ieee/train.csv'
        self.valid_parsed_file = '../data/data/ieee/valid.csv'
        self.test_parsed_file = '../data/data/ieee/test.csv'
        self.args = args
        self.id_cat_col = ["id_" + str(i) for i in range(12, 39)] + [
            "DeviceType", "DeviceInfo", "id_33_1", "id_31_1", "id_30_1"
        ]
        self.trans_cat_col = ["M" + str(i) for i in range(1, 10)] + ["card" + str(i) for i in range(1, 7)] + \
                             ["ProductCD", "addr1", "addr2", "P_emaildomain", "R_emaildomain"]
        # self.try_list = ["id_" + str(i) for i in [13, 17]]
        self.try_list = ["id_" + str(i) for i in []]

        self.id_onehot_encoder = OneHot(0.01)
        self.trans_onehot_encoder = OneHot(0.01)
        self.id_scaler = Scaler()
        self.trans_scaler = Scaler()

        self.global_name = []
        self.global_df = []

        self.emails = {
            'gmail': 'google',
            'att.net': 'att',
            'twc.com': 'spectrum',
            'scranton.edu': 'other',
            'optonline.net': 'other',
            'hotmail.co.uk': 'microsoft',
            'comcast.net': 'other',
            'yahoo.com.mx': 'yahoo',
            'yahoo.fr': 'yahoo',
            'yahoo.es': 'yahoo',
            'charter.net': 'spectrum',
            'live.com': 'microsoft',
            'aim.com': 'aol',
            'hotmail.de': 'microsoft',
            'centurylink.net': 'centurylink',
            'gmail.com': 'google',
            'me.com': 'apple',
            'earthlink.net': 'other',
            'gmx.de': 'other',
            'web.de': 'other',
            'cfl.rr.com': 'other',
            'hotmail.com': 'microsoft',
            'protonmail.com': 'other',
            'hotmail.fr': 'microsoft',
            'windstream.net': 'other',
            'outlook.es': 'microsoft',
            'yahoo.co.jp': 'yahoo',
            'yahoo.de': 'yahoo',
            'servicios-ta.com': 'other',
            'netzero.net': 'other',
            'suddenlink.net': 'other',
            'roadrunner.com': 'other',
            'sc.rr.com': 'other',
            'live.fr': 'microsoft',
            'verizon.net': 'yahoo',
            'msn.com': 'microsoft',
            'q.com': 'centurylink',
            'prodigy.net.mx': 'att',
            'frontier.com': 'yahoo',
            'anonymous.com': 'other',
            'rocketmail.com': 'yahoo',
            'sbcglobal.net': 'att',
            'frontiernet.net': 'yahoo',
            'ymail.com': 'yahoo',
            'outlook.com': 'microsoft',
            'mail.com': 'other',
            'bellsouth.net': 'other',
            'embarqmail.com': 'centurylink',
            'cableone.net': 'other',
            'hotmail.es': 'microsoft',
            'mac.com': 'apple',
            'yahoo.co.uk': 'yahoo',
            'netzero.com': 'other',
            'yahoo.com': 'yahoo',
            'live.com.mx': 'microsoft',
            'ptd.net': 'other',
            'cox.net': 'other',
            'aol.com': 'aol',
            'juno.com': 'other',
            'icloud.com': 'apple'
        }

        self.drop_col = [
            'TransactionDT', 'V300', 'V309', 'V111', 'C3', 'V124', 'V106',
            'V125', 'V315', 'V134', 'V102', 'V123', 'V316', 'V113', 'V136',
            'V305', 'V110', 'V299', 'V289', 'V286', 'V318', 'V103', 'V304',
            'V116', 'V298', 'V284', 'V293', 'V137', 'V295', 'V301', 'V104',
            'V311', 'V115', 'V109', 'V119', 'V321', 'V114', 'V133', 'V122',
            'V319', 'V105', 'V112', 'V118', 'V117', 'V121', 'V108', 'V135',
            'V320', 'V303', 'V297', 'V120'
        ]
        self.us_emails = ['gmail', 'net', 'edu']

        self.timer = Timer()

        if load_raw:
            df_trans = pd.read_csv("../data/data/ieee/train_transaction.csv"
                                   ).set_index("TransactionID")
            df_id_raw = pd.read_csv("../data/data/ieee/train_identity.csv"
                                    ).set_index("TransactionID")
            dt_trans = pd.read_csv("../data/data/ieee/test_transaction.csv"
                                   ).set_index("TransactionID")
            dt_id = pd.read_csv("../data/data/ieee/test_identity.csv"
                                ).set_index("TransactionID")
            self.timer.toc("read done")

            self.test_id = list(dt_trans.index)

            df_trans, dv_trans = train_test_split(
                df_trans,
                random_state=args.random_state,
                train_size=0.8,
                test_size=0.2)

            df_id = df_id_raw.loc[
                df_trans.index.intersection(df_id_raw.index), :]

            dv_id = df_id_raw.loc[
                dv_trans.index.intersection(df_id_raw.index), :]
            self.timer.toc("split done")

            self.feature_engineering_id(df_id)
            self.feature_engineering_id(dv_id)
            self.feature_engineering_id(dt_id)
            self.timer.toc("process id done")

            self.feature_engineering_trans(df_trans)
            self.feature_engineering_trans(dv_trans)
            self.feature_engineering_trans(dt_trans)
            self.timer.toc("process trans done")

            self.global_count(df_id, df_trans)
            self.timer.toc("global_count done")

            df_trans, ytrain = self.split_x_y(df_trans)
            dv_trans, yvalid = self.split_x_y(dv_trans)
            dt_trans, ytest = self.split_x_y(dt_trans)

            df_global = self.get_derived(df_id)
            self.timer.toc("get train derived done")
            dv_global = self.get_derived(dv_id)
            self.timer.toc("get valid derived done")
            dt_global = self.get_derived(dt_id)
            self.timer.toc("get test derived done")

            self.init_onehot(df_id, df_trans)
            self.init_scaler(df_id.drop(self.id_cat_col, axis=1),
                             df_trans.drop(self.trans_cat_col, axis=1))

            Xtrain = self.transform(df_id, df_trans, df_global)
            self.timer.toc("transform train done")
            Xvalid = self.transform(dv_id, dv_trans, dv_global)
            self.timer.toc("transform valid done")
            Xtest = self.transform(dt_id, dt_trans, dt_global)
            self.timer.toc("transform test done")

            pd.concat([Xtrain, ytrain], axis=1).to_csv(self.train_parsed_file,
                                                       float_format='%.8f',
                                                       index=True)
            self.timer.toc("write train done")
            pd.concat([Xvalid, yvalid], axis=1).to_csv(self.valid_parsed_file,
                                                       float_format='%.8f',
                                                       index=True)
            self.timer.toc("write valid done")
            Xtest.to_csv(self.test_parsed_file,
                         float_format='%.8f',
                         index=True)
            self.timer.toc("write test done")

            raise Exception("STOP HERE!")
        else:
            self.train = self.load(self.train_parsed_file)
            self.timer.toc("load train done")
            self.valid = self.load(self.valid_parsed_file)
            self.timer.toc("load valid done")
            self.test = self.load(self.test_parsed_file, test=True)
            self.timer.toc("load test done")
            self.num_input = self.train[0].shape[1]

            # sanity check
            print(np.unique(self.train[1], return_counts=True))
            print(np.unique(self.valid[1], return_counts=True))