コード例 #1
0
ファイル: roadway.py プロジェクト: qianjin5/Autoenv
def read_boundaries(filepath_boundaries: str):
    fp = open(filepath_boundaries, 'r')
    lines = fp.readlines()
    fp.close()
    for i, line in enumerate(lines):
        lines[i] = line.strip()
    assert lines[0] == 'BOUNDARIES'

    n_boundaries = int(lines[1])

    assert n_boundaries >= 0

    retval = []  # Array{Vector{VecE2}}

    line_index = 1
    for i in range(n_boundaries):
        line_index += 1
        assert lines[line_index] == "BOUNDARY {}".format(i + 1)
        line_index += 1
        npts = int(lines[line_index])
        line = []  # Array{VecE2}
        for j in range(npts):
            line_index += 1
            matches = re.findall(FLOATING_POINT_REGEX, lines[line_index])
            x = float(matches[0]) * METERS_PER_FOOT
            y = float(matches[1]) * METERS_PER_FOOT
            line.append(VecE2.VecE2(x, y))
        retval.append(line)
    return retval
コード例 #2
0
 def get_by_ind_roadway(self, ind: CurvePt.CurveIndex, roadway):
     # print(ind.i, len(self.curve))
     if ind.i == -1:
         pt_lo = prev_lane_point(self, roadway)
         pt_hi = self.curve[0]
         s_gap = VecE2.norm(VecE2.VecE2(pt_hi.pos - pt_lo.pos))
         pt_lo = CurvePt.CurvePt(pt_lo.pos, -s_gap, pt_lo.k, pt_lo.kd)
         return CurvePt.lerp(pt_lo, pt_hi, ind.t)
     elif ind.i < len(self.curve) - 1:
         return CurvePt.get_curve_list_by_index(self.curve, ind)
     else:
         pt_hi = next_lane_point(self, roadway)
         pt_lo = self.curve[-1]
         s_gap = VecE2.norm(VecE2.VecE2(pt_hi.pos - pt_lo.pos))
         pt_hi = CurvePt.CurvePt(pt_hi.pos, pt_lo.s + s_gap, pt_hi.k,
                                 pt_hi.kd)
         return CurvePt.lerp(pt_lo, pt_hi, ind.t)
コード例 #3
0
ファイル: Get.py プロジェクト: qianjin5/Autoenv
def get_RoadEdgeDist_Right(rec: SceneRecord,
                           roadway: Roadway,
                           vehicle_index: int,
                           pastframe: int = 0):
    veh = rec[pastframe][vehicle_index]
    offset = veh.state.posF.t
    footpoint = veh.get_footpoint
    seg = roadway.get_by_id(veh.state.posF.roadind.tag.segment)
    lane = seg.lanes[0]
    roadproj = proj_1(footpoint, lane, roadway)
    curvept = roadway.get_by_roadindex(
        RoadIndex(roadproj.curveproj.ind, roadproj.tag))
    lane = roadway.get_by_tag(roadproj.tag)
    vec = curvept.pos - footpoint
    return FeatureState.FeatureValue(lane.width / 2 +
                                     VecE2.norm(VecE2.VecE2(vec.x, vec.y)) +
                                     offset)
コード例 #4
0
def proj_2(posG: VecSE2.VecSE2, roadway: Roadway):

    best_dist2 = math.inf
    best_proj = RoadProjection(
        CurvePt.CurveProjection(CurvePt.CurveIndex(-1, -1), None, None),
        NULL_LANETAG)

    for seg in roadway.segments:
        for lane in seg.lanes:
            roadproj = proj_1(posG, lane, roadway,
                              move_along_curves=False)  # return RoadProjection
            targetlane = roadway.get_by_tag(roadproj.tag)  # return Lane
            footpoint = targetlane.get_by_ind_roadway(roadproj.curveproj.ind,
                                                      roadway)
            vec = posG - footpoint.pos
            dist2 = VecE2.normsquared(VecE2.VecE2(vec.x, vec.y))
            # print(best_dist2, dist2, roadproj.curveproj.ind.i)
            if dist2 < best_dist2:
                best_dist2 = dist2
                best_proj = roadproj
    return best_proj
コード例 #5
0
def proj(posG: VecSE2.VecSE2, curve: list):
    """
        Vec.proj(posG::VecSE2, curve::list of CurvePt)
    Return a CurveProjection obtained by projecting posG onto the curve
    """
    ind = index_closest_to_point(curve, posG)
    # if ind <= len(curve):
    #     print("project: ")
    #     print(ind, len(curve))
    curveind = CurveIndex(-1, 0)
    footpoint = VecSE2.VecSE2(0, 0, 0)
    if 0 < ind < len(curve) - 1:
        t_lo = get_lerp_time_2(curve[ind - 1], curve[ind], posG)
        t_hi = get_lerp_time_2(curve[ind], curve[ind + 1], posG)

        p_lo = VecSE2.lerp(curve[ind - 1].pos, curve[ind].pos, t_lo)
        p_hi = VecSE2.lerp(curve[ind].pos, curve[ind + 1].pos, t_hi)

        vec_lo = p_lo - posG
        vec_hi = p_hi - posG

        d_lo = VecE2.norm(VecE2.VecE2(vec_lo.x, vec_lo.y))
        d_hi = VecE2.norm(VecE2.VecE2(vec_hi.x, vec_hi.y))
        if d_lo < d_hi:
            footpoint = p_lo
            curveind = CurveIndex(ind - 1, t_lo)
        else:
            footpoint = p_hi
            curveind = CurveIndex(ind, t_hi)
    elif ind == 0:
        t = get_lerp_time_2(curve[0], curve[1], posG)
        footpoint = VecSE2.lerp(curve[0].pos, curve[1].pos, t)
        curveind = CurveIndex(ind, t)
    else:  # ind == length(curve)
        t = get_lerp_time_2(curve[-2], curve[-1], posG)
        footpoint = VecSE2.lerp(curve[-2].pos, curve[-1].pos, t)
        curveind = CurveIndex(ind - 1, t)

    return get_curve_projection(posG, footpoint, curveind)
コード例 #6
0
def to_oriented_bounding_box_1(retval: ConvexPolygon, center: VecSE2.VecSE2,
                               len: float, wid: float):

    assert len > 0
    assert wid > 0
    assert center.theta is not None
    assert center.x is not None
    assert center.y is not None

    x = VecE2.polar(len / 2, center.theta)
    y = VecE2.polar(wid / 2, center.theta + math.pi / 2)

    C = VecSE2.convert(center)
    retval.pts[0] = x - y + C
    retval.pts[1] = x + y + C
    retval.pts[2] = -x + y + C
    retval.pts[3] = -x - y + C
    retval.npts = 4

    retval.set(ensure_pts_sorted_by_min_polar_angle(retval))

    return retval
コード例 #7
0
def get_intersection_time(A: Projectile, seg: LineSegment):
    o = VecE2.VecE2(A.pos.x, A.pos.y)
    v_1 = o - seg.A
    v_2 = seg.B - seg.A
    v_3 = VecE2.polar(1.0, A.pos.theta + math.pi / 2)

    denom = geom.dot_product(v_2, v_3)

    if not math.isclose(denom, 0.0, abs_tol=1e-10):
        d_1 = geom.cross_product(v_2,
                                 v_1) / denom  # time for projectile (0 ≤ t₁)
        t_2 = geom.dot_product(v_1,
                               v_3) / denom  # time for segment (0 ≤ t₂ ≤ 1)
        if 0.0 <= d_1 and 0.0 <= t_2 <= 1.0:
            return d_1 / A.v
    else:
        # denom is zero if the segment and the projectile are parallel
        # only collide if they are perfectly aligned
        if geom.are_collinear(A.pos, seg.A, seg.B):
            dist_a = VecE2.normsquared(seg.A - o)
            dist_b = VecE2.normsquared(seg.B - o)
            return math.sqrt(min(dist_a, dist_b)) / A.v

    return math.inf
コード例 #8
0
def get_lerp_time_unclamped_1(A: VecE2.VecE2, B: VecE2.VecE2, Q: VecE2.VecE2):

    a = Q - A
    # A.show()
    # B.show()
    b = B - A
    c = VecE2.proj(a, b, VecE2.VecE2)

    if b.x != 0.0:
        t = c.x / b.x
    elif b.y != 0.0:
        t = c.y / b.y
    else:
        t = 0.0  # no lerping to be done

    return t
コード例 #9
0
ファイル: roadway.py プロジェクト: qianjin5/Autoenv
def read_centerlines(filepath_centerlines: str):
    fp = open(filepath_centerlines, 'r')
    lines = fp.readlines()
    fp.close()
    for i, line in enumerate(lines):
        lines[i] = line.strip()
    assert lines[0] == 'CENTERLINES'
    n_centerlines = int(lines[1])
    assert n_centerlines >= 0
    line_index = 1
    retval = {}
    for i in range(n_centerlines):
        line_index += 1
        assert lines[line_index] == "CENTERLINE"
        line_index += 1
        name = lines[line_index]
        line_index += 1
        npts = int(lines[line_index])
        line = []
        for j in range(npts):
            line_index += 1
            matches = re.findall(FLOATING_POINT_REGEX, lines[line_index])
            x = float(matches[0]) * METERS_PER_FOOT
            y = float(matches[1]) * METERS_PER_FOOT
            line.append(VecE2.VecE2(x, y))

        centerline = []
        theta = (line[1] - line[0]).atan()
        centerline.append(
            CurvePt.CurvePt(VecSE2.VecSE2(line[0].x, line[0].y, theta), 0.0))
        for j in range(1, npts - 1):
            s = centerline[j - 1].s + (line[j] - line[j - 1]).hypot()
            theta = ((line[j] - line[j - 1]).atan() +
                     (line[j + 1] - line[j]).atan()) / 2  # mean angle
            centerline.append(
                CurvePt.CurvePt(VecSE2.VecSE2(line[j].x, line[j].y, theta), s))
        s = centerline[npts - 2].s + (line[npts - 1] - line[npts - 2]).hypot()
        theta = (line[npts - 1] - line[npts - 2]).atan()
        centerline.append(
            CurvePt.CurvePt(
                VecSE2.VecSE2(line[npts - 1].x, line[npts - 1].y, theta), s))
        retval[name] = centerline
    return retval
コード例 #10
0
def observe(lidar: LidarSensor, scene: Frame, roadway: Roadway, vehicle_index: int):
    state_ego = scene[vehicle_index].state
    egoid = scene[vehicle_index].id
    ego_vel = VecE2.polar(state_ego.v, state_ego.posG.theta)

    in_range_ids = set()

    for i in range(scene.n):
        veh = scene[i]
        if veh.id != egoid:
            a = state_ego.posG - veh.state.posG
            distance = VecE2.norm(VecE2.VecE2(a.x, a.y))
            # account for the length and width of the vehicle by considering
            # the worst case where their maximum radius is aligned
            distance = distance - math.hypot(veh.definition.length_ / 2., veh.definition.width_ / 2.)
            if distance < lidar.max_range:
                in_range_ids.add(veh.id)

                # compute range and range_rate for each angle
    for (i, angle) in enumerate(lidar.angles):
        ray_angle = state_ego.posG.theta + angle
        ray_vec = VecE2.polar(1.0, ray_angle)
        ray = VecSE2.VecSE2(state_ego.posG.x, state_ego.posG.y, ray_angle)

        range_ = lidar.max_range
        range_rate = 0.0
        for j in range(scene.n):
            veh = scene[j]
            # only consider the set of potentially in range vehicles
            if veh.id in in_range_ids:
                lidar.poly.set(to_oriented_bounding_box_2(lidar.poly, veh))

                range2 = get_collision_time(ray, lidar.poly, 1.0)  # TODO: continue finish here
                if range2 and range2 < range_:
                    range_ = range2
                    relative_speed = VecE2.polar(veh.state.v, veh.state.posG.theta) - ego_vel
                    range_rate = VecE2.proj_(relative_speed, ray_vec)
        lidar.ranges[i] = range_
        lidar.range_rates[i] = range_rate

    return lidar
コード例 #11
0
ファイル: neighbor_feature.py プロジェクト: qianjin5/Autoenv
def get_neighbor_fore_along_lane_1(scene: Frame,
                                   roadway: Roadway,
                                   tag_start: LaneTag,
                                   s_base: float,
                                   targetpoint_primary: str,
                                   targetpoint_valid: str,
                                   max_distance_fore: float = 250.0,
                                   index_to_ignore: int = -1):

    # targetpoint_primary: the reference point whose distance we want to minimize
    # targetpoint_valid: the reference point, which if distance to is positive, we include the vehicle
    best_ind = None
    best_dist = max_distance_fore
    tag_target = tag_start

    dist_searched = 0.0
    while dist_searched < max_distance_fore:
        lane = roadway.get_by_tag(tag_target)
        for i in range(scene.n):
            veh = scene[i]
            if i != index_to_ignore:
                s_adjust = None
                if veh.state.posF.roadind.tag == tag_target:
                    s_adjust = 0.0
                elif is_between_segments_hi(veh.state.posF.roadind.ind, lane.curve) and \
                        is_in_entrances(roadway.get_by_tag(tag_target), veh.state.posF.roadind.tag):
                    distance_between_lanes = VecE2.norm(
                        VecE2.VecE2(
                            roadway.get_by_tag(tag_target).curve[0].pos -
                            roadway.get_by_tag(
                                veh.state.posF.roadind.tag).curve[-1].pos))
                    s_adjust = -(roadway.get_by_tag(
                        veh.state.posF.roadind.tag).curve[-1].s +
                                 distance_between_lanes)
                elif is_between_segments_lo(veh.state.posF.roadind.ind) and \
                        is_in_exits(roadway.get_by_tag(tag_target), veh.state.posF.roadind.tag):
                    distance_between_lanes = VecE2.norm(
                        VecE2.VecE2(
                            roadway.get_by_tag(tag_target).curve[-1].pos -
                            roadway.get_by_tag(
                                veh.state.posF.roadind.tag).curve[0].pos))
                    s_adjust = roadway.get_by_tag(
                        tag_target).curve[-1].s + distance_between_lanes
                if s_adjust is not None:
                    s_valid = veh.state.posF.s + veh.get_targetpoint_delta(
                        targetpoint_valid) + s_adjust
                    dist_valid = s_valid - s_base + dist_searched
                    if dist_valid >= 0.0:
                        s_primary = veh.state.posF.s + veh.get_targetpoint_delta(
                            targetpoint_primary) + s_adjust
                        dist = s_primary - s_base + dist_searched
                        if dist < best_dist:
                            best_dist = dist
                            best_ind = i

        if best_ind is not None:
            break
        if (not has_next(lane)) or (tag_target == tag_start
                                    and dist_searched != 0.0):
            # exit after visiting this lane a 2nd time
            break
        dist_searched += (lane.curve[-1].s - s_base)
        s_base = -VecE2.norm(
            VecE2.VecE2(lane.curve[-1].pos -
                        next_lane_point(lane, roadway).pos))
        # negative distance between lanes
        tag_target = next_lane(lane, roadway).tag

    return NeighborLongitudinalResult(best_ind, best_dist)
コード例 #12
0
def index_closest_to_point(curve: list,
                           target: VecSE2.VecSE2):  # curve: list(CurvePt)
    """
        index_closest_to_point(curve::Curve, target::posG(VecSE2))
    returns the curve index closest to the point described by `target`.
    `target` must be [x, y].
    """

    a = 1
    b = len(curve)
    c = div(a + b, 2)

    assert (len(curve) >= b)

    sqdist_a = curve[a - 1].pos - target
    sqdist_b = curve[b - 1].pos - target
    sqdist_c = curve[c - 1].pos - target

    # sqdist_a.show()
    # sqdist_b.show()
    # sqdist_c.show()

    sqdist_a = VecE2.normsquared(VecE2.VecE2(sqdist_a.x, sqdist_a.y))
    sqdist_b = VecE2.normsquared(VecE2.VecE2(sqdist_b.x, sqdist_b.y))
    sqdist_c = VecE2.normsquared(VecE2.VecE2(sqdist_c.x, sqdist_c.y))

    # print(target.x, target.y, sqdist_a, sqdist_b, sqdist_c)
    # curve[a - 1].pos.show()
    # curve[b - 1].pos.show()
    # curve[c - 1].pos.show()

    while True:
        if b == a:
            return a - 1
        elif b == a + 1:
            return (b - 1) if sqdist_b < sqdist_a else (a - 1)
        elif c == a + 1 and c == b - 1:
            if sqdist_a < sqdist_b and sqdist_a < sqdist_c:
                return a - 1
            elif sqdist_b < sqdist_a and sqdist_b < sqdist_c:
                return b - 1
            else:
                return c - 1

        left = div(a + c, 2)
        sqdist_l = curve[left - 1].pos - target
        sqdist_l = VecE2.normsquared(VecE2.VecE2(sqdist_l.x, sqdist_l.y))

        right = div(c + b, 2)
        sqdist_r = curve[right - 1].pos - target
        sqdist_r = VecE2.normsquared(VecE2.VecE2(sqdist_r.x, sqdist_r.y))

        if sqdist_l < sqdist_r:
            b = c
            sqdist_b = sqdist_c
            c = left
            sqdist_c = sqdist_l
        else:
            a = c
            sqdist_a = sqdist_c
            c = right
            sqdist_c = sqdist_r

    raise OverflowError("index_closest_to_point reached unreachable statement")
コード例 #13
0
def is_potentially_colliding(A: Vehicle, B: Vehicle):
    vec = A.state.posG - B.state.posG
    delta_square = VecE2.normsquared(VecE2.VecE2(vec.x, vec.y))
    r_a = _bounding_radius(A)
    r_b = _bounding_radius(B)
    return delta_square <= r_a * r_a + 2 * r_a * r_b + r_b * r_b
コード例 #14
0
def is_colliding_2(P: ConvexPolygon, Q: ConvexPolygon, temp: ConvexPolygon):
    temp.set(minkowski_difference(temp, P, Q))
    return in_poly(VecE2.VecE2(0, 0), temp)
コード例 #15
0
ファイル: roadway.py プロジェクト: qianjin5/Autoenv
def integrate(centerline_fn: str,
              boundary_fn: str,
              dist_threshold_lane_connect: float = 2.0,
              desired_distance_between_curve_samples: float = 1.0):
    '''
    :param centerline_path: center line file path
    :param boundary_path: boundary file path
    :param dist_threshold_lane_connect: [m]
    :param desired_distance_between_curve_samples: [m]
    :return:
    '''
    centerline_path = os.path.join(DIR, "../data/", centerline_fn)
    boundary_path = os.path.join(DIR, "../data/", boundary_fn)
    input_params = RoadwayInputParams(filepath_boundaries=boundary_path,
                                      filepath_centerlines=centerline_path)
    roadway_data = read_roadway(input_params)
    print("Finish loading centerlines and boundaries.")
    lane_pts_dict = dict()
    for (handle_int, lane) in enumerate(roadway_data.centerlines):
        segid = get_segid(lane)
        N = len(lane)
        pts = [None for _ in range(N)]  # VecE2 list
        for i in range(N):
            x = lane[i].pos.x
            y = lane[i].pos.y
            pts[i] = VecE2.VecE2(x, y)
        laneid = 1
        for tag in lane_pts_dict.keys():
            if tag.segment == segid:
                laneid += 1
        lane_pts_dict[roadway.LaneTag(segid, laneid)] = pts

    ###################################################
    # Shift pts to connect to previous / next pts

    lane_next_dict = dict()
    lane_prev_dict = dict()

    for (tag, pts) in lane_pts_dict.items():
        # see if can connect to next
        best_tag = roadway.NULL_LANETAG
        best_ind = -1
        best_sq_dist = dist_threshold_lane_connect
        for (tag2, pts2) in lane_pts_dict.items():
            if tag2.segment != tag.segment:
                for (ind, pt) in enumerate(pts2):
                    sq_dist = VecE2.normsquared(VecE2.VecE2(pt - pts[-1]))
                    if sq_dist < best_sq_dist:
                        best_sq_dist = sq_dist
                        best_ind = ind
                        best_tag = tag2
        if best_tag != roadway.NULL_LANETAG:
            # remove our last pt and set next to pt to their pt
            pts.pop()
            lane_next_dict[tag] = (lane_pts_dict[best_tag][best_ind], best_tag)
            if best_ind == 0:  # set connect prev as well
                lane_prev_dict[best_tag] = (pts[-1], tag)

    for (tag, pts) in lane_pts_dict.items():
        # see if can connect to prev
        if tag not in lane_prev_dict.keys():
            best_tag = roadway.NULL_LANETAG
            best_ind = -1
            best_sq_dist = dist_threshold_lane_connect
            for (tag2, pts2) in lane_pts_dict.items():
                if tag2.segment != tag.segment:
                    for (ind, pt) in enumerate(pts2):
                        sq_dist = VecE2.normsquared(VecE2.VecE2(pt - pts[0]))
                        if sq_dist < best_sq_dist:
                            best_sq_dist = sq_dist
                            best_ind = ind
                            best_tag = tag2
            if best_tag != roadway.NULL_LANETAG:
                lane_prev_dict[tag] = (lane_pts_dict[best_tag][best_ind],
                                       best_tag)

    ###################################################
    # Build the roadway
    retval = roadway.Roadway()
    for (tag, pts) in lane_pts_dict.items():
        if not retval.has_segment(tag.segment):
            retval.segments.append(roadway.RoadSegment(tag.segment))
    lane_new_dict = dict()  # old -> new tag
    for seg in retval.segments:

        # pull lanetags for this seg
        lanetags = []  # LaneTag
        for tag in lane_pts_dict.keys():
            if tag.segment == seg.id:
                lanetags.append(tag)

        # sort the lanes such that the rightmost lane is lane 1
        # do this by taking the first lane,
        # then project each lane's midpoint to the perpendicular at the midpoint

        assert len(lanetags) != 0
        proj_positions = [None for _ in range(len(lanetags))]  # list of float
        first_lane_pts = lane_pts_dict[lanetags[0]]
        n = len(first_lane_pts)
        lo = first_lane_pts[n // 2 - 1]
        hi = first_lane_pts[n // 2]
        midpt_orig = (lo + hi) / 2
        dir = VecE2.polar(
            1.0, (hi - lo).atan() +
            math.pi / 2)  # direction perpendicular (left) of lane

        for (i, tag) in enumerate(lanetags):
            pts = lane_pts_dict[tag]
            n = len(pts)
            midpt = (pts[n // 2 - 1] + pts[n // 2]) / 2
            proj_positions[i] = VecE2.proj_(midpt - midpt_orig, dir)

        for (i, j) in enumerate(
                sorted(range(len(proj_positions)),
                       key=proj_positions.__getitem__)):
            tag = lanetags[j]

            boundary_left = roadway.LaneBoundary("solid", "white") if i == len(proj_positions) - 1 \
                else roadway.LaneBoundary("broken", "white")

            boundary_right = roadway.LaneBoundary("solid", "white") if i == 0 \
                else roadway.LaneBoundary("broken", "white")

            pts = lane_pts_dict[tag]
            pt_matrix = np.zeros((2, len(pts)))
            for (k, P) in enumerate(pts):
                pt_matrix[0, k] = P.x
                pt_matrix[1, k] = P.y
            print("fitting curve ", len(pts), "  ")
            curve = _fit_curve(pt_matrix,
                               desired_distance_between_curve_samples)

            tag_new = roadway.LaneTag(seg.id, len(seg.lanes) + 1)
            lane = roadway.Lane(tag_new,
                                curve,
                                boundary_left=boundary_left,
                                boundary_right=boundary_right)
            seg.lanes.append(lane)
            lane_new_dict[tag] = tag_new

    ###################################################
    # Connect the lanes
    for (tag_old, tup) in lane_next_dict.items():
        next_pt, next_tag_old = tup
        lane = retval.get_by_tag(lane_new_dict[tag_old])
        next_tag_new = lane_new_dict[next_tag_old]
        dest = retval.get_by_tag(next_tag_new)
        roadproj = roadway.proj_1(VecSE2.VecSE2(next_pt, 0.0), dest, retval)
        print("connecting {} to {}".format(lane.tag, dest.tag))
        cindS = CurvePt.curveindex_end(lane.curve)
        cindD = roadproj.curveproj.ind

        if cindD == CurvePt.CURVEINDEX_START:  # a standard connection
            lane, dest = roadway.connect(lane, dest)
            # remove any similar connection from lane_prev_dict
            if next_tag_old in lane_prev_dict.keys(
            ) and lane_prev_dict[next_tag_old][1] == tag_old:
                lane_prev_dict.pop(next_tag_old)
        else:
            lane.exits.insert(
                0,
                roadway.LaneConnection(True, cindS,
                                       roadway.RoadIndex(cindD, dest.tag)))
            dest.entrances.append(
                roadway.LaneConnection(False, cindD,
                                       roadway.RoadIndex(cindS, lane.tag)))

    for (tag_old, tup) in lane_prev_dict.items():
        prev_pt, prev_tag_old = tup
        lane = retval.get_by_tag(lane_new_dict[tag_old])
        prev_tag_new = lane_new_dict[prev_tag_old]
        prev = retval.get_by_tag(prev_tag_new)
        roadproj = roadway.proj_1(VecSE2.VecSE2(prev_pt, 0.0), prev, retval)
        print("connecting {} from {}".format(lane.tag, prev.tag))
        cindS = roadproj.curveproj.ind
        cindD = CurvePt.CURVEINDEX_START
        if cindS == CurvePt.curveindex_end(
                prev.curve):  # a standard connection
            assert roadway.has_prev(prev)
            prev, lane = roadway.connect(prev, lane)
        else:
            # a standard connection
            prev.exits.append(
                roadway.LaneConnection(True, cindS,
                                       roadway.RoadIndex(cindD, lane.tag)))
            lane.entrances.insert(
                0,
                roadway.LaneConnection(False, cindD,
                                       roadway.RoadIndex(cindS, prev.tag)))

    retval = convert_curves_feet_to_meters(retval)
コード例 #16
0
 def get_footpoint(self):
     return self.state.posG.add_E2(
         VecE2.polar(
             self.state.posF.t,
             self.state.posG.theta - self.state.posF.phi - math.pi / 2))