コード例 #1
0
def generatePlotSTA(ax, exp_paths, bestBy, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent

        if bestBy == 'end':
            metric = lambda m: np.mean(m[-int(m.shape[0] * .1):])
            best_rmspbe = getBestEnd(rmspbe)
            best = find(rmsve, best_rmspbe)
        elif bestBy == 'auc':
            metric = np.mean
            best_rmspbe = getBest(rmspbe)
            best = find(rmsve, best_rmspbe)

        m = metric(best.mean())
        ax.hlines(m, 2**-6, 2**6, color=color, label=label)

        bounds.append([m, m])
コード例 #2
0
ファイル: ndh_curve.py プロジェクト: andnp/acceleration-v2
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)

        if exp.agent == 'TDadagrad':
            continue

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        dashed = use_ideal_h
        color = colors[exp.agent]

        # load the errors and hnorm files
        errors = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'ndh_summary.npy')

        # choose the best parameters from the _errors_
        best = getBestEnd(errors)

        best_ndh = find(results, best)

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        plotBest(best_ndh, ax, label=label, color=color, dashed=dashed)

    # plt.show()
    save(exp, f'norm_delta-hat')
    plt.clf()
コード例 #3
0
def baseline(ax, exp_path, values, bounds):
    exp = loadExperiment(path)
    results = loadResults(exp, errorfile)

    if 'Regh' in exp.agent:
        results = whereParameterEquals(results, 'reg_h', 0.8)
        results = whereParameterEquals(results, 'ratio', 1)
    elif 'TDC' in exp.agent or 'GTD2' in exp.agent:
        results = whereParameterEquals(results, 'ratio', 1)

    if bestBy == 'end':
        metric = lambda m: np.mean(m[-int(m.shape[0] * .1):])
        best = getBestEnd(results)
    elif bestBy == 'auc':
        metric = np.mean
        best = getBest(results)

    color = colors[exp.agent]
    label = exp.agent

    m = metric(best.mean())
    low = min(values)
    high = max(values)
    ax.hlines(m, low, high, color=color, label=label, linewidth=4, linestyle=':')

    bounds.append((m, m))
コード例 #4
0
def plot(results,
         ax,
         window=1,
         smoothing=0,
         color=None,
         alpha=0.4,
         alphaMain=1,
         label=None,
         labelParams=None,
         bestBy='end',
         dashed=False):
    if bestBy == 'end':
        best = getBestEnd(results)
    elif bestBy == 'auc':
        best = getBest(results)
    else:
        raise Exception('I can only get best by "end" or "auc"')

    print(best.exp.agent, best.params)
    return plotBest(best,
                    ax,
                    smoothing=smoothing,
                    color=color,
                    alpha=alpha,
                    alphaMain=alphaMain,
                    label=label,
                    window=window,
                    labelParams=labelParams,
                    dashed=dashed)
コード例 #5
0
def getSensitivityData(results, param, reducer='best', overStream=None, bestBy='end'):
    useOtherStream = overStream is not None
    overStream = overStream if useOtherStream else results

    bestByStr = 'auc'
    if not callable(bestBy):
        bestByStr = bestBy

    if reducer == 'best':
        bestStream = getBestOverParameter(overStream, param, bestBy=bestByStr)

    elif reducer == 'slice':
        l, r = tee(overStream)
        if bestByStr == 'end':
            best = getBestEnd(l)
        elif bestBy == 'auc':
            best = getBest(l)

        bestStream = sliceOverParameter(r, best, param)

    x = sorted(list(bestStream))
    if useOtherStream:
        best = {}
        teed = tee(results, len(x))
        for i, k in enumerate(x):
            best[k] = find(teed[i], bestStream[k])

    else:
        best = bestStream


    if bestBy == 'end':
        metric = lambda m: np.mean(m[-int(m.shape[0] * .1):])
    elif bestBy == 'auc':
        metric = np.mean
    elif callable(bestBy):
        metric = bestBy

    y = np.array([metric(best[k].mean()) for k in x])
    e = np.array([metric(best[k].stderr()) for k in x])

    e[np.isnan(y)] = 0.000001
    y[np.isnan(y)] = 100000

    return x, y, e
コード例 #6
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)

        # load the errors and hnorm files
        errors = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'hnorm_summary.npy')

        # choose the best parameters from the _errors_
        best = getBestEnd(errors)

        best_hnorm = find(results, best)

        label = fileName(exp_path).replace('.json', '')

        plotBest(best_hnorm, ax, label=label)

    plt.show()
    # save(exp, f'learning-curve')
    plt.clf()
コード例 #7
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'rmspbe_summary.npy')

        best = getBestEnd(rmsve)
        best_rmspbe = find(results, best)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        plotBest(best_rmspbe, ax, label=label, color=color, dashed=dashed)

    # plt.show()
    save(exp, f'rmspbe_over_rmsve', type='svg')
    plt.clf()
コード例 #8
0
def generatePlot(exp_path):
    ax = plt.gca()
    # ax.semilogx()
    exp = loadExperiment(exp_path)

    # load the errors and hnorm files
    errors = loadResults(exp, 'errors_summary.npy')
    results = loadResults(exp, 'stepsize_summary.npy')

    # choose the best parameters from the _errors_
    best = getBestEnd(errors)

    best_ss = find(results, best)

    alg = exp.agent.replace('adagrad', '')

    plotBest(best_ss, ax, label=['w', 'h'])

    ax.set_ylim([0, 4])

    print(alg)
    # plt.show()
    save(exp, f'stepsizes-{alg}')
    plt.clf()
コード例 #9
0
def generatePlot(exp_paths):
    f, axes = plt.subplots(2, 2)
    # ax.semilogx()

    # RMSPBE plots
    ax = axes[0, 0]
    rmspbe_bounds = []
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'rmspbe_summary.npy')

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = False
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        # if use_ideal_h:
        #     label += '-h*'

        bounds = plot(results, ax, label=label, color=color, dashed=dashed)
        rmspbe_bounds.append(bounds)
        ax.set_ylabel("RMSPBE")
        ax.set_title("RMSPBE")

    ax = axes[0, 1]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'rmspbe_summary.npy')

        best = getBestEnd(rmsve)
        best_rmspbe = find(results, best)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = False
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        # if use_ideal_h:
        #     label += '-h*'

        bounds = plotBest(best_rmspbe,
                          ax,
                          label=label,
                          color=color,
                          dashed=dashed)
        rmspbe_bounds.append(bounds)
        ax.set_title("RMSVE")

    # RMSVE plots
    ax = axes[1, 0]
    rmsve_bounds = []
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')

        # if exp.agent == 'TDadagrad':
        #     continue

        # best PBE using AUC
        best = getBestEnd(rmspbe)
        best_rmsve = find(rmsve, best)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = False
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        # if use_ideal_h:
        #     label += '-h*'

        bounds = plotBest(best_rmsve,
                          ax,
                          label=label,
                          color=color,
                          dashed=dashed)
        rmsve_bounds.append(bounds)
        ax.set_ylabel("RMSVE")

    ax = axes[1, 1]
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = False
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        # if use_ideal_h:
        #     label += '-h*'

        bounds = plot(results, ax, label=label, color=color, dashed=dashed)
        rmsve_bounds.append(bounds)

    # rmspbe
    rmspbe_lower = min(map(lambda x: x[0], rmspbe_bounds)) * 0.9
    rmspbe_upper = max(map(lambda x: x[1], rmspbe_bounds)) * 1.05
    axes[0, 0].set_ylim([rmspbe_lower, rmspbe_upper])
    axes[0, 1].set_ylim([rmspbe_lower, rmspbe_upper])

    # rmsve
    rmsve_lower = min(map(lambda x: x[0], rmsve_bounds)) * 0.9
    rmsve_upper = max(map(lambda x: x[1], rmsve_bounds)) * 1.05
    axes[1, 0].set_ylim([rmsve_lower, rmsve_upper])
    axes[1, 1].set_ylim([rmsve_lower, rmsve_upper])

    plt.show()