コード例 #1
0
ファイル: models.py プロジェクト: Akumenyi/ml_drought
def earnn(
    experiment="one_month_forecast",
    include_pred_month=True,
    surrounding_pixels=None,
    pretrained=True,
    ignore_vars=None,
):
    data_path = get_data_path()

    if not pretrained:
        predictor = EARecurrentNetwork(
            hidden_size=128,
            data_folder=data_path,
            experiment=experiment,
            include_pred_month=include_pred_month,
            surrounding_pixels=surrounding_pixels,
            ignore_vars=ignore_vars,
        )
        predictor.train(num_epochs=50, early_stopping=5)
        predictor.evaluate(save_preds=True)
        predictor.save_model()
    else:
        predictor = load_model(data_path /
                               f"models/{experiment}/ealstm/model.pt")

    test_file = data_path / f"features/{experiment}/test/2018_3"
    assert test_file.exists()
    all_explanations_for_file(test_file, predictor, batch_size=100)
コード例 #2
0
def earnn(
    experiment="one_month_forecast",
    include_pred_month=True,
    surrounding_pixels=None,
    pretrained=False,
    explain=False,
    static="features",
    ignore_vars=None,
    num_epochs=50,
    early_stopping=5,
    static_embedding_size=10,
    hidden_size=128,
    predict_delta=False,
    spatial_mask=None,
    include_latlons=False,
    normalize_y=True,
    include_prev_y=True,
    include_yearly_aggs=True,  # new
    clear_nans=True,
    weight_observations=False,
    pred_month_static=False,
):
    data_path = get_data_path()

    if not pretrained:
        predictor = EARecurrentNetwork(
            hidden_size=hidden_size,
            data_folder=data_path,
            experiment=experiment,
            include_pred_month=include_pred_month,
            surrounding_pixels=surrounding_pixels,
            static=static,
            static_embedding_size=static_embedding_size,
            ignore_vars=ignore_vars,
            predict_delta=predict_delta,
            spatial_mask=spatial_mask,
            include_latlons=include_latlons,
            normalize_y=normalize_y,
            include_prev_y=include_prev_y,
            include_yearly_aggs=include_yearly_aggs,
            clear_nans=clear_nans,
            weight_observations=weight_observations,
            pred_month_static=pred_month_static,
        )
        predictor.train(num_epochs=num_epochs, early_stopping=early_stopping)
        predictor.evaluate(save_preds=True)
        predictor.save_model()
    else:
        predictor = load_model(data_path /
                               f"models/{experiment}/ealstm/model.pt")

    if explain:
        test_file = data_path / f"features/{experiment}/test/2018_3"
        assert test_file.exists()
        all_explanations_for_file(test_file, predictor, batch_size=100)