コード例 #1
0
ファイル: dl.py プロジェクト: stefantaubert/tacotron2
def dl_pretrained(base_dir: str, train_name: str = DEFAULT_WAVEGLOW, prep_name: Optional[str] = None, version: int = 3):
  train_dir = get_train_dir(base_dir, train_name, create=True)
  assert os.path.isdir(train_dir)
  checkpoints_dir = get_checkpoints_dir(train_dir)
  dest_path = get_checkpoint_pretrained(checkpoints_dir)

  print("Downloading pretrained waveglow model from Nvida...")
  dl_wg(
    destination=dest_path,
    version=version
  )

  print("Pretrained model is now beeing converted to be able to use it...")
  convert_glow(
    origin=dest_path,
    destination=dest_path,
    keep_orig=False
  )

  if prep_name is not None:
    prep_dir = get_prepared_dir(base_dir, prep_name)
    wholeset = load_filelist(prep_dir)
    save_testset(train_dir, wholeset)
    save_valset(train_dir, wholeset)
  save_prep_name(train_dir, prep_name=prep_name)
コード例 #2
0
def infer(base_dir: str, train_name: str, wav_path: str, custom_checkpoint: Optional[int] = None, sigma: float = 0.666, denoiser_strength: float = 0.00, custom_hparams: Optional[Dict[str, str]] = None):
  train_dir = get_train_dir(base_dir, train_name, create=False)
  assert os.path.isdir(train_dir)

  checkpoint_path, iteration = get_custom_or_last_checkpoint(
    get_checkpoints_dir(train_dir), custom_checkpoint)
  infer_dir = get_infer_dir(train_dir, wav_path, iteration)

  logger = prepare_logger(get_infer_log(infer_dir))
  logger.info(f"Inferring {wav_path}...")

  checkpoint = CheckpointWaveglow.load(checkpoint_path, logger)

  wav, wav_sr, wav_mel, orig_mel = infer_core(
    wav_path=wav_path,
    denoiser_strength=denoiser_strength,
    sigma=sigma,
    checkpoint=checkpoint,
    custom_hparams=custom_hparams,
    logger=logger
  )

  save_infer_wav(infer_dir, wav_sr, wav)
  save_infer_plot(infer_dir, wav_mel)
  save_infer_orig_wav(infer_dir, wav_path)
  save_infer_orig_plot(infer_dir, orig_mel)
  score = save_diff_plot(infer_dir)
  save_v(infer_dir)

  logger.info(f"Imagescore: {score*100}%")
  logger.info(f"Saved output to: {infer_dir}")
コード例 #3
0
ファイル: training.py プロジェクト: stefantaubert/tacotron2
def try_load_checkpoint(base_dir: str, train_name: Optional[str],
                        checkpoint: Optional[int],
                        logger: Logger) -> Optional[CheckpointWaveglow]:
    result = None
    if train_name:
        train_dir = get_train_dir(base_dir, train_name, False)
        checkpoint_path, _ = get_custom_or_last_checkpoint(
            get_checkpoints_dir(train_dir), checkpoint)
        result = CheckpointWaveglow.load(checkpoint_path, logger)
    return result
コード例 #4
0
ファイル: validation.py プロジェクト: stefantaubert/tacotron2
def validate(base_dir: str,
             train_name: str,
             entry_id: Optional[int] = None,
             speaker: Optional[str] = None,
             ds: str = "val",
             custom_checkpoint: Optional[int] = None,
             sigma: float = 0.666,
             denoiser_strength: float = 0.00,
             custom_hparams: Optional[Dict[str, str]] = None):
    train_dir = get_train_dir(base_dir, train_name, create=False)
    assert os.path.isdir(train_dir)

    if ds == "val":
        data = load_valset(train_dir)
    elif ds == "test":
        data = load_testset(train_dir)
    else:
        raise Exception()

    speaker_id: Optional[int] = None
    if speaker is not None:
        prep_name = load_prep_name(train_dir)
        prep_dir = get_prepared_dir(base_dir, prep_name, create=False)
        speakers = load_prep_speakers_json(prep_dir)
        speaker_id = speakers.get_id(speaker)

    entry = data.get_for_validation(entry_id, speaker_id)

    checkpoint_path, iteration = get_custom_or_last_checkpoint(
        get_checkpoints_dir(train_dir), custom_checkpoint)
    val_dir = get_val_dir(train_dir, entry, iteration)

    logger = prepare_logger(get_val_log(val_dir))
    logger.info(f"Validating {entry.wav_path}...")

    checkpoint = CheckpointWaveglow.load(checkpoint_path, logger)

    wav, wav_sr, wav_mel, orig_mel = infer(wav_path=entry.wav_path,
                                           denoiser_strength=denoiser_strength,
                                           sigma=sigma,
                                           checkpoint=checkpoint,
                                           custom_hparams=custom_hparams,
                                           logger=logger)

    save_val_wav(val_dir, wav_sr, wav)
    save_val_plot(val_dir, wav_mel)
    save_val_orig_wav(val_dir, entry.wav_path)
    save_val_orig_plot(val_dir, orig_mel)
    score = save_diff_plot(val_dir)
    save_v(val_dir)

    logger.info(f"Imagescore: {score*100}%")
    logger.info(f"Saved output to: {val_dir}")
コード例 #5
0
ファイル: training.py プロジェクト: stefantaubert/tacotron2
def continue_training(base_dir: str,
                      train_name: str,
                      custom_hparams: Optional[Dict[str, str]] = None):
    train_dir = get_train_dir(base_dir, train_name, create=False)
    assert os.path.isdir(train_dir)

    logs_dir = get_train_logs_dir(train_dir)
    logger = prepare_logger(get_train_log_file(logs_dir))

    continue_train(custom_hparams=custom_hparams,
                   logdir=logs_dir,
                   trainset=load_trainset(train_dir),
                   valset=load_valset(train_dir),
                   save_checkpoint_dir=get_checkpoints_dir(train_dir),
                   debug_logger=logger)
コード例 #6
0
ファイル: training.py プロジェクト: stefantaubert/tacotron2
def start_new_training(base_dir: str,
                       train_name: str,
                       prep_name: str,
                       test_size: float = 0.01,
                       validation_size: float = 0.01,
                       custom_hparams: Optional[Dict[str, str]] = None,
                       split_seed: int = 1234,
                       warm_start_train_name: Optional[str] = None,
                       warm_start_checkpoint: Optional[int] = None):
    prep_dir = get_prepared_dir(base_dir, prep_name)
    wholeset = load_filelist(prep_dir)
    trainset, testset, valset = split_prepared_data_train_test_val(
        wholeset,
        test_size=test_size,
        validation_size=validation_size,
        seed=split_seed,
        shuffle=True)
    train_dir = get_train_dir(base_dir, train_name, create=True)
    save_trainset(train_dir, trainset)
    save_testset(train_dir, testset)
    save_valset(train_dir, valset)

    logs_dir = get_train_logs_dir(train_dir)
    logger = prepare_logger(get_train_log_file(logs_dir), reset=True)

    warm_model = try_load_checkpoint(base_dir=base_dir,
                                     train_name=warm_start_train_name,
                                     checkpoint=warm_start_checkpoint,
                                     logger=logger)

    save_prep_name(train_dir, prep_name)

    train(
        custom_hparams=custom_hparams,
        logdir=logs_dir,
        trainset=trainset,
        valset=valset,
        save_checkpoint_dir=get_checkpoints_dir(train_dir),
        debug_logger=logger,
        warm_model=warm_model,
    )