コード例 #1
0
ファイル: baidu.py プロジェクト: ZhaoliangHe/AdaCompress-Code
    image_num = len(image_path)
    print("图片数量 ",image_num)
    return image_path,image_num

if __name__ == '__main__':
    start = time.time()
    #提取image路径文件
    # with open("image_reference_cache_amazon.defaultdict", "rb") as file:
    #     data = pk.load(file)
    with open("result/imagenet_baidu_ref2000.pkl", "rb") as file:
        data = pk.load(file)
    image_path,image_num = get_image_path(data)

    #上传原图到云服务器
    # cloud_agent = FacePP()
    cloud_agent = Baidu()
    # cloud_agent = AmazonRekognition()
    ref_quality = 75
    cache = defaultdict(dict)
    deepn_cache = defaultdict(dict)
    compare_cache = defaultdict(dict)
    # 导入之前结果
    # with open("result/Origin_Baidu.defaultdict", 'rb') as file:
    #     cache = pk.load(file)
    # with open("result/DeepN_Baidu.defaultdict", 'rb') as file:
    #     deepn_cache = pk.load(file)
    # with open("result/Compare_Baidu.defaultdict", 'rb') as file:
    #     compare_cache = pk.load(file)
    num1 = image_num
    # num1 = 30
    for i in range(num1):
コード例 #2
0
    def estimate(self):
        if len(self.agent_memory['reward']) < self.recent_zone:
            recent_reward = np.mean(self.agent_memory['reward'])
            recent_acc = np.mean(self.agent_memory['accuracy'])
        else:
            recent_reward = np.mean(
                self.agent_memory['reward'][-self.recent_zone:])
            recent_acc = np.mean(
                self.agent_memory['accuracy'][-self.recent_zone:])
        return recent_acc, recent_reward


#

if __name__ == '__main__':
    api = Baidu()
    rm = ResultManager('evaluation_results')

    running_agent = RunningAgent(
        dqn_path='evaluation_results/agent_DQN_train_baidu_imagenet.h5',
        banchmark_q=75,
        cloud_backend=api,
    )

    imagenet_paths = _gen_sample_set_imagenet(
        '/home/hsli/gnode02/imagenet-data/train/', 3)[-500:]

    test_image_paths = imagenet_paths

    for idx, path in enumerate(test_image_paths):
        error_code, log_dict = running_agent.agent_upload(path)
コード例 #3
0
x = feature_extractor.output
x = AveragePooling2D(pool_size=(4, 4))(x)
feature_extractor = Model(inputs=feature_extractor.input, outputs=x)
compute_memory(101)
# agent
agent = DQN_Agent(s_dim=1280,
                  a_dim=10,
                  epsilon_decay=0.99,
                  epsilon_min=0.02,
                  gamma=0.95,
                  replay_batchsize=256)

if __name__ == '__main__':
    test_image_paths = imagenet_paths[:5]  # FLIR[:1000]
    # test_image_paths = FLIR[:1000]
    cloud_agent = Baidu()

    train_log = defaultdict(list)
    ref_results = defaultdict(dict)
    compress_results = defaultdict(dict)

    choose_action_total_time = 0
    feedback_total_time = 0
    feature_total_time = 0
    recent_accuracy = 0
    recent_reward = 0

    start_time = time.time()
    if EVALUATION:
        agent.model = load_model('compute_time_results/baidu_imagenet.h5')
        # agent.model = load_model('compute_time_results/baidu_FLIR.h5')