#==================================3============================================= # compute re-scaled interevent times and distances #================================================================================ catChild.copy(eqCatMc) catParent.copy(eqCatMc) #catChild, catPar = create_parent_child_cat( projCat, dNND) catChild.selEventsFromID(dNND['aEqID_c'], repeats=True) catParent.selEventsFromID(dNND['aEqID_p'], repeats=True) print('size of parent catalog', catChild.size(), 'size of offspring cat', catParent.size()) # note that dictionary dPar here has to include 'b','D' and 'Mc' a_R, a_T = clustering.rescaled_t_r(catChild, catParent, { 'b': dPar['b'], 'D': dPar['D'], 'Mc': f_Mc }, correct_co_located=True) RT_file = 'data/df1.8/%s_RT_Mc_%.1f.mat' % (file_in.split('.')[0], f_Mc) scipy.io.savemat(RT_file, {'R': a_R, 'T': a_T}, do_compression=True) #==================================4============================================================== # T-R density plots #================================================================================================= a_Tbin = np.arange(dPar['Tmin'], dPar['Tmax'] + 2 * dPar['binx'], dPar['binx']) a_Rbin = np.arange(dPar['Rmin'], dPar['Rmax'] + 2 * dPar['biny'], dPar['biny']) XX, YY, ZZ = data_utils.density_2D(np.log10(a_T), np.log10(a_R), a_Tbin,
ax.grid( 'on') ax.set_xlim( dPar['xmin'], dPar['xmax']) #==================================4============================================================== # T-R density plot #================================================================================================= catChild = EqCat() catParent= EqCat() catChild.copy( ranCat) catParent.copy( ranCat) catChild.selEventsFromID( dNND['aEqID_c'], repeats = True) catParent.selEventsFromID( dNND['aEqID_p'], repeats = True) print( catChild.size(), catParent.size(), eqCatMc.size()) a_R, a_T = clustering.rescaled_t_r( catChild, catParent, dConst, correct_co_located = True) a_Tbin = np.arange( dPar['Tmin'], dPar['Tmax']+2*dPar['binx'], dPar['binx']) a_Rbin = np.arange( dPar['Rmin'], dPar['Rmax']+2*dPar['biny'], dPar['biny']) a_log_T = np.log10( a_T) a_log_R = np.log10( a_R) XX, YY, ZZ = data_utils.density_2D( a_log_T, a_log_R, a_Tbin, a_Rbin, sigma = dPar['sigma']) plt.figure(2, figsize= (8,10)) ax = plt.subplot(111) ax.set_title( 'Nearest Neighbor Pairs in R-T') #------------------------------------------------------------------------------ normZZ = ZZ*( dPar['binx']*dPar['biny']*eqCatMc.size()) plot1 = ax.pcolormesh( XX, YY, normZZ, cmap=dPar['cmap']) cbar = plt.colorbar(plot1, orientation = 'horizontal', shrink = .5, aspect = 20,) #ax.plot( np.log10( a_T), np.log10( a_R), 'wo', ms = 1.5, alpha = .2)