def fwfm_query_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[ TrainConfig, EvalConfig]: if not data_processor: data_processor = ConcatDataProcessor() train_config = TrainConfig( dataset_id=dataset_id, data_processor=data_processor, model=fm.FwFMQuery, epochs=epochs, verbose=2, ) eval_config = EvalConfig( dataset_id=dataset_id, model_name='fwfm_query', verbose=0, ) return train_config, eval_config
def nrmf_simple_all_config(dataset_id: str, epochs: int, data_processor) -> Tuple[ TrainConfig, EvalConfig]: if not data_processor: data_processor = ConcatDataProcessor() train_config = TrainConfig( dataset_id=dataset_id, data_processor=data_processor, model=nrmf.NRMFSimpleAll, epochs=epochs, verbose=2, ) eval_config = EvalConfig( dataset_id=dataset_id, model_name='nrmf_simple_all', verbose=0, ) return train_config, eval_config
def ebr_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[ TrainConfig, EvalConfig]: if not data_processor: data_processor = ConcatDataProcessor() train_config = TrainConfig( dataset_id=dataset_id, data_processor=data_processor, model=representation.EBR, epochs=epochs, verbose=2, ) eval_config = EvalConfig( dataset_id=dataset_id, model_name='ebr', verbose=0, ) return train_config, eval_config
def naive_config(dataset_id: str, epochs: int, data_processor: DataProcessor) -> Tuple[ TrainConfig, EvalConfig]: if not data_processor: data_processor = ConcatDataProcessor() train_config = TrainConfig( dataset_id=dataset_id, data_processor=data_processor, model=naive.Naive, epochs=epochs, verbose=2, ) eval_config = EvalConfig( dataset_id=dataset_id, model_name='naive', verbose=0, ) return train_config, eval_config